Publications by authors named "Adrian Verster"

The intensive workload associated with the preparation of high-quality DNA libraries remains a key obstacle toward widespread deployment of sequencing technologies in remote and resource-limited areas. We describe the development of single-use microfluidic devices driven by an advanced pneumatic centrifugal microfluidic platform, the PowerBlade, to automate the preparation of Illumina-compatible libraries based on adaptor ligation methodology. The developed on-chip workflow includes enzymatic DNA fragmentation coupled to end-repair, adaptor ligation, first DNA cleanup, PCR amplification, and second DNA cleanup.

View Article and Find Full Text PDF

Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how antibiotics affect the good bacteria in people’s stomachs by looking at 22 households after they took a drug called ciprofloxacin.
  • Most people’s good bacteria came back quickly after stopping the antibiotics, but some had lasting changes and lost many kinds of bacteria.
  • Even after taking antibiotics, getting new good bacteria to stick around was tough, which shows that there are still challenges that prevent new bacteria from settling in.
View Article and Find Full Text PDF

The healthy human infant gut microbiome undergoes stereotypical changes in taxonomic composition between birth and maturation to an adult-like stable state. During this time, extensive communication between microbiota and the host immune system contributes to health status later in life. Although there are many reported associations between microbiota compositional alterations and disease in adults, less is known about how microbiome development is altered in pediatric diseases.

View Article and Find Full Text PDF

Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of high importance as progress towards therapeutic modulation of the microbiota advances. However, given the inaccessibility of the gastrointestinal tract, our knowledge of the biogeographical and ecological relationships between physically interacting taxa has been limited to date. It has been suggested that interbacterial antagonism plays an important role in gut community dynamics, but in practice the conditions under which antagonistic behavior is favored or disfavored by selection in the gut environment are not well known.

View Article and Find Full Text PDF

Determining associations between intestinal bacteria and continuously measured physiological outcomes is important for understanding the bacteria-host relationship but is not straightforward since abundance data (compositional data) are not normally distributed. To address this issue, we developed a fully Bayesian linear regression model (BRACoD; Bayesian Regression Analysis of Compositional Data) with physiological measurements (continuous data) as a function of a matrix of relative bacterial abundances. Bacteria can be classified as operational taxonomic units or by taxonomy (genus, family, etc.

View Article and Find Full Text PDF

The focus of this article is the application of natural language processing (NLP) for information extraction in event-based surveillance (EBS) systems. We describe common information extraction applications from open-source news articles and media sources in EBS systems, methods, value in public health, challenges and emerging developments.

View Article and Find Full Text PDF

Background: Microbial communities have become an important subject of research across multiple disciplines in recent years. These communities are often examined via shotgun metagenomic sequencing, a technology which can offer unique insights into the genomic content of a microbial community. Functional annotation of shotgun metagenomic data has become an increasingly popular method for identifying the aggregate functional capacities encoded by the community's constituent microbes.

View Article and Find Full Text PDF

Background: Salmonella enterica is a leading cause of foodborne illness worldwide resulting in considerable public health and economic costs. Testing for the presence of this pathogen in food is often hampered by the presence of background microflora that may present as Salmonella (false positives). False positive isolates belonging to the genus Citrobacter can be difficult to distinguish from Salmonella due to similarities in their genetics, cell surface antigens, and other phenotypes.

View Article and Find Full Text PDF

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism.

View Article and Find Full Text PDF

Background: While the composition of the gut microbiome has now been well described by several large-scale studies, models that can account for the range of microbiome compositions that have been observed are still lacking. One model that has been well studied in macro communities and that could be useful for understanding microbiome assembly is the competitive lottery model. This model posits that groups of organisms from a regional pool of species are able to colonize the same niche and that the first species to arrive will take over the entire niche, excluding other group members.

View Article and Find Full Text PDF

Although gut microbiome composition is well defined, the mechanisms underlying community assembly remain poorly understood. Bacteroidales possess three genetic architectures (GA1-3) of the type VI secretion system (T6SS), an effector delivery pathway that mediates interbacterial competition. Here we define the distribution and role of GA1-3 in the human gut using metagenomic analysis.

View Article and Find Full Text PDF

Genes encoding essential components of core cellular processes are typically highly conserved across eukaryotes. However, a small proportion of essential genes are highly taxonomically restricted; there appear to be no similar genes outside the genomes of highly related species. What are the functions of these poorly characterized taxonomically restricted genes (TRGs)? Systematic screens in and previously identified yeast or nematode TRGs that are essential for viability and we find that these genes share many molecular features, despite having no significant sequence similarity.

View Article and Find Full Text PDF

The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial habitats of importance to human health and industry. Although these communities are often densely colonized, a broadly distributed contact-dependent mechanism of interbacterial antagonism utilized by Firmicutes has not been elucidated. Here we show that proteins belonging to the LXG polymorphic toxin family present in mediate cell contact- and Esx secretion pathway-dependent growth inhibition of diverse Firmicute species.

View Article and Find Full Text PDF

A significant challenge of functional genomics is to develop methods for genome-scale acquisition and analysis of cell biological data. Here, we present an integrated method that combines genome-wide genetic perturbation of Saccharomyces cerevisiae with high-content screening to facilitate the genetic description of sub-cellular structures and compartment morphology. As proof of principle, we used a Rad52-GFP marker to examine DNA damage foci in ∼20 million single cells from ∼5,000 different mutant backgrounds in the context of selected genetic or chemical perturbations.

View Article and Find Full Text PDF

High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions.

View Article and Find Full Text PDF

Many mutations cause genetic disorders. However, two people inheriting the same mutation often have different severity of symptoms, and this is partly genetic. The effects of genetic background on mutant phenotypes are poorly understood, but predicting them is critical for personalized medicine.

View Article and Find Full Text PDF

Variola virus, the agent of smallpox, has a severely restricted host range (humans) but a devastatingly high mortality rate. Although smallpox has been eradicated by a World Health Organization vaccination program, knowledge of the evolutionary processes by which human super-pathogens such as variola virus arise is important. By analyzing the evolution of variola and other closely related poxviruses at the level of single nucleotide polymorphisms we detected a hotspot of genome variation within the smallpox ortholog of the vaccinia virus O1L gene, which is known to be necessary for efficient replication of vaccinia virus in human cells.

View Article and Find Full Text PDF

Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes.

View Article and Find Full Text PDF

Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C.

View Article and Find Full Text PDF

DNA methylation-dependent gene silencing is initiated by DNA methyltransferases (DNMTs) and mediated by methyl-binding domain proteins (MBDs), which recruit histone deacetylases (HDACs) to silence DNA, a process that is essential for normal development. Here, we show that the MBD proteins MBD2 and MeCP2 regulate distinct transitional stages of olfactory receptor neuron (ORN) differentiation in vivo. Mbd2 null progenitors display enhanced proliferation, recapitulated by HDAC inhibition, and Mbd2 null ORNs have a decreased lifespan.

View Article and Find Full Text PDF