Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity.
View Article and Find Full Text PDFThe last twenty years have been a period of intense investigations of materials based on titanium dioxide, which have unique properties and functionalities, and which can be used in various areas of medicine. As a part of this issue, the results of our works for the assessment of the photocatalytic activity of titanium dioxide nanocoatings of different nanoarchitecture (nanoporous, nanotubular, nanosponge-like and nanofibrous examples), which were earlier checked in terms of their biocompatibility and usability for the modification of medical devices' surfaces, are presented. The studied materials were produced on the surface of Ti6Al4V substrates using electrochemical and chemical oxidation methods.
View Article and Find Full Text PDFTitania nanotube (TNT) coatings were produced using low-potential anodic oxidation of Ti6Al4V substrates in the potential range 3-20 V. They were analysed by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The wettability was estimated by measuring the contact angle when applying water droplets.
View Article and Find Full Text PDFMorphologically different titania coatings (nanofibers (TNFs), nanoneedles (TNNs), and nanowires (TNWs)) were studied as potential biomedical materials. The abovementioned systems were produced in situ on Ti6Al4V substrates via direct oxidation processes using H₂O₂ and H₂O₂/CaCl₂ agents, and via thermal oxidation in the presence of Ar and Ar/H₂O₂. X-ray diffraction and Raman spectroscopy have been used to structurally characterize the produced materials.
View Article and Find Full Text PDF