Publications by authors named "Adrian Tiron"

6-hydroxy-L-nicotine (6HLN) is a nicotine (NIC) derivative with proven therapeutic potential in neurodegenerative disorders. Here, the impact of 6HLN on cell growth, migratory behavior, and inflammatory status of three different cancer cell lines (A549, MCF7, and U87) and two normal cell lines (16HBE14o and MCF10A) was investigated. In silico analyses were conducted to evaluate the binding affinity of 6HLN to nicotinic receptors (nAChRs) containing α9 and α5 subunits.

View Article and Find Full Text PDF

Diblock copolymers of polyhistidine are known for their self-assembly into micelles and their pH-dependent disassembly due to the amphiphilic character of the copolymer and the unsaturated imidazole groups that undergo a hydrophobic-to-hydrophilic transition in an acidic pH. This property has been largely utilized for the design of drug delivery systems that target a tumor environment possessing a slightly lower extracellular pH (6.8-7.

View Article and Find Full Text PDF

Background: Theranostics, a novel concept in medicine, is based on the use of an agent for simultaneous diagnosis and treatment. Nanomaterials provide promising novel approaches to theranostics. Carbon Dots have been shown to exhibit anti-tumoral properties in various cancer models.

View Article and Find Full Text PDF

Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects of perioperative hyperoxia exposure on distal micro-metastases and on circulating cancer cells can potentially play a role in cancer progression or recurrence. In clinical trials, hyperoxia seems to increase the rate of postoperative complications and, by delaying postoperative recovery, it can alter the return to intended oncological treatment.

View Article and Find Full Text PDF

(1) Background: Triple negative breast cancer (TNBC) is a highly aggressive tumor, associated with high rates of early distant recurrence and short survival times, and treatment may require surgery, and thus anesthesia. The effects of anesthetic drugs on cancer progression are under scrutiny, but published data are controversial, and the involved mechanisms unclear. Anesthetic agents have been shown to modulate several molecular cascades, including PI3K/AKT/mTOR.

View Article and Find Full Text PDF

Background: In the latest years, there has been an increased interest in nanomaterials that may provide promising novel approaches to disease diagnostics and therapeutics. Our previous results demonstrated that Carbon-dots prepared from -hydroxyphthalimide (CD-NHF) exhibited anti-tumoral activity on several cancer cell lines such as MDA-MB-231, A375, A549, and RPMI8226, while U87 glioma tumor cells were unaffected. Gliomas represent one of the most common types of human primary brain tumors and are responsible for the majority of deaths.

View Article and Find Full Text PDF

Background: The conifer species Pinus halepensis (Pinaceae) and Tetraclinis articulata (Cupressaceae) are widely used in traditional medicine due to their beneficial health properties.

Objective: This study aimed to investigate the mechanisms by which P. halepensis and T.

View Article and Find Full Text PDF

Metastatic breast cancer dominates the female cancer-related mortality. Tumour-associated molecules represents a crucial for early disease detection and identification of novel therapeutic targets. Nanomaterial technologies provide promising novel approaches to disease diagnostics and therapeutics.

View Article and Find Full Text PDF

Perioperative factors promoting cancer recurrence and metastasis are under scrutiny. While oxygen toxicity is documented in several acute circumstances, its implication in tumor evolution is poorly understood. We investigated hyperoxia long-term effects on cancer progression and some underlying mechanisms using both in vitro and in vivo models of triple negative breast cancer (TNBC).

View Article and Find Full Text PDF

Background: The adipocyte expansion is a critical process with implications in the pathogenesis of obesity associated metabolic syndrome. Impaired adipogenesis leads to dysfunctional, hypertrophic adipocytes, local inflammation and peripheric insulin resistance.

Methods: We assessed the relationship between the adipogenic differentiation capacity of the subcutaneous adipose derived stem cells (ASCs), evaluated by total lipid accumulation, and the metabolic and hormonal profile in a group of obese female patients proposed for bariatric surgery (N = 20) versus normal weight female controls (N = 7).

View Article and Find Full Text PDF

Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation.

View Article and Find Full Text PDF

Adult neurogenesis in the hippocampus is a remarkable phenomenon involved in various aspects of learning and memory as well as disease pathophysiology. Brain-derived neurotrophic factor (BDNF) represents a major player in the regulation of this unique form of neuroplasticity, yet the mechanisms underlying its pro-neurogenic actions remain unclear. Here, we examined the effects associated with brief (25 min), unilateral infusion of BDNF in the rat dentate gyrus.

View Article and Find Full Text PDF

Local, synaptic synthesis of new proteins in response to neuronal stimulation plays a key role in the regulation of synaptic morphogenesis. Recent studies indicate that matrix metalloproteinase-9 (MMP-9), an endopeptidase that regulates the pericellular environment through cleavage of its protein components, plays a critical role in regulation of spine morphology and synaptic plasticity. Here, we sought to determine whether MMP-9 mRNA is transported to dendrites for local translation and protein release.

View Article and Find Full Text PDF

Regulation of microRNA (miRNA) expression and function in the context of activity-dependent synaptic plasticity in the adult brain is little understood. Here, we examined miRNA expression during long-term potentiation (LTP) in the dentate gyrus of adult anesthetized rats. Microarray expression profiling identified a subpopulation of regulated mature miRNAs 2 h after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant pathway.

View Article and Find Full Text PDF

The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity.

View Article and Find Full Text PDF

Progenitor cells in the adult dentate gyrus provide a constant supply of neuronal precursors, yet only a small fraction of these cells survive and develop into mature dentate granule cells (DGCs). A major challenge of current research is thus to understand the stringent selection process that governs the maturation and functional integration of adult-born DGCs. In mature DGCs, high-frequency stimulation (HFS) of the perforant path input elicits robust expression of the immediate early gene Arc/Arg3.

View Article and Find Full Text PDF

New gene expression is necessary for long-term potentiation (LTP) consolidation, yet roles for specific activity-induced mRNAs have not been defined. Here we probed the dynamic function of activity-induced Arc (activity-regulated cytoskeletal-associated protein)/Arg3.1 (activity-regulated gene 3.

View Article and Find Full Text PDF

Protein synthesis underlying activity-dependent synaptic plasticity is controlled at the level of mRNA translation. We examined the dynamics and spatial regulation of two key translation factors, eukaryotic initiation factor 4E (eIF4E) and elongation factor-2 (eEF2), during long-term potentiation (LTP) induced by local infusion of brain-derived neurotrophic factor (BDNF) into the dentate gyrus of anesthetized rats. BDNF-induced LTP led to rapid, transient phosphorylation of eIF4E and eEF2, and enhanced expression of eIF4E protein in dentate gyrus homogenates.

View Article and Find Full Text PDF

The effects of lesioning the ventral tegmental area or substantia nigra pars reticulata by means of bilateral microinjections of two doses of kainic acid (50 ng/250 nl and 100 ng/500 nl) or 6-hydroxydopamine (8 microg/4 microl) were investigated to clarify the role of the mesotelencephalic dopamine system in learning and memory processes. Our findings suggest that ventral tegmental area and substantia nigra dopaminergic neurons play an important role in retention of both short-term memory, tested in the Y-maze task and long-term memory evaluated with the multi-trial passive avoidance test, without affecting memory acquisition. As compared to short-term memory, long-term memory is more susceptible to the decreased dopamine level in nervous structures involved in processing and storage of information.

View Article and Find Full Text PDF

Scopolamine dose-dependently inhibits passive avoidance latency and decreases spontaneous alternation in the Y-maze, suggesting effects on long-term and short-term memory, respectively. Chlorisondamine (10 mg/kg), a compound which produces a long-lasting central nicotinic receptor blockade, did not affect short-term and long-term memory performance. In normal rats, nicotine at the doses of 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3habfdl9ebjt9eblafl0ca0d481podr6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once