In recent years, synthetic Computed Tomography (CT) images generated from Magnetic Resonance (MR) or Cone Beam Computed Tomography (CBCT) acquisitions have been shown to be comparable to real CT images in terms of dose computation for radiotherapy simulation. However, until now, there has been no independent strategy to assess the quality of each synthetic image in the absence of ground truth. In this work, we propose a Deep Learning (DL)-based framework to predict the accuracy of synthetic CT in terms of Mean Absolute Error (MAE) without the need for a ground truth (GT).
View Article and Find Full Text PDFStrahlenther Onkol
August 2024
Radiation therapy (RT) is a highly digitized field relying heavily on computational methods and, as such, has a high affinity for the automation potential afforded by modern artificial intelligence (AI). This is particularly relevant where imaging is concerned and is especially so during image-guided RT (IGRT). With the advent of online adaptive RT (ART) workflows at magnetic resonance (MR) linear accelerators (linacs) and at cone-beam computed tomography (CBCT) linacs, the need for automation is further increased.
View Article and Find Full Text PDFRadiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily.
View Article and Find Full Text PDFBackground: Cone beam computed tomography (CBCT) is widely used in many medical fields. However, conventional CBCT circular scans suffer from cone beam (CB) artifacts that limit the quality and reliability of the reconstructed images due to incomplete data.
Purpose: Saddle trajectories in theory might be able to improve the CBCT image quality by providing a larger region with complete data.
Background: Deep learning has shown promising results to generate MRI-based synthetic CTs and to enable accurate proton dose calculations on MRIs. For clinical implementation of synthetic CTs, quality assurance tools that verify their quality and reliability are required but still lacking.
Purpose: This study aims to evaluate the predictive value of uncertainty maps generated with Monte Carlo dropout (MCD) for verifying proton dose calculations on deep-learning-based synthetic CTs (sCTs) derived from MRIs in online adaptive proton therapy.
Background: Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have recently shown to successfully correct CBCT images, which suffer from severe imaging artifacts, and generate high quality synthetic CT (sCT) images which enable CBCT-based proton dose calculations.
View Article and Find Full Text PDFIn radiotherapy, dose calculations based on 4D cone beam CTs (4DCBCTs) require image intensity corrections. This retrospective study compared the dose calculation accuracy of a deep learning, projection-based scatter correction workflow (ScatterNet), to slower workflows: conventional 4D projection-based scatter correction (CBCT) and a deformable image registration (DIR)-based method (4DvCT). For 26 lung cancer patients, planning CTs (pCTs), 4DCTs and CBCT projections were available.
View Article and Find Full Text PDFPurpose: Medical imaging has become increasingly important in diagnosing and treating oncological patients, particularly in radiotherapy. Recent advances in synthetic computed tomography (sCT) generation have increased interest in public challenges to provide data and evaluation metrics for comparing different approaches openly. This paper describes a dataset of brain and pelvis computed tomography (CT) images with rigidly registered cone-beam CT (CBCT) and magnetic resonance imaging (MRI) images to facilitate the development and evaluation of sCT generation for radiotherapy planning.
View Article and Find Full Text PDFBackground: Time-resolved 4D cone beam-computed tomography (4D-CBCT) allows a daily assessment of patient anatomy and respiratory motion. However, 4D-CBCTs suffer from imaging artifacts that affect the CT number accuracy and prevent accurate proton dose calculations. Deep learning can be used to correct CT numbers and generate synthetic CTs (sCTs) that can enable CBCT-based proton dose calculations.
View Article and Find Full Text PDFPurpose: Adaptive proton therapy (APT) of lung cancer patients requires frequent volumetric imaging of diagnostic quality. Cone-beam CT (CBCT) can provide these daily images, but x-ray scattering limits CBCT-image quality and hampers dose calculation accuracy. The purpose of this study was to generate CBCT-based synthetic CTs using a deep convolutional neural network (DCNN) and investigate image quality and clinical suitability for proton dose calculations in lung cancer patients.
View Article and Find Full Text PDFPurpose: Cone-beam CT (CBCT)-based synthetic CTs (sCT) produced with a deep convolutional neural network (DCNN) show high image quality, suggesting their potential usability in adaptive proton therapy workflows. However, the nature of such workflows involving DCNNs prevents the user from having direct control over their output. Therefore, quality control (QC) tools that monitor the sCTs and detect failures or outliers in the generated images are needed.
View Article and Find Full Text PDFCone-beam computed tomography (CBCT)- and magnetic resonance (MR)-images allow a daily observation of patient anatomy but are not directly suited for accurate proton dose calculations. This can be overcome by creating synthetic CTs (sCT) using deep convolutional neural networks. In this study, we compared sCTs based on CBCTs and MRs for head and neck (H&N) cancer patients in terms of image quality and proton dose calculation accuracy.
View Article and Find Full Text PDFIn-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity.
View Article and Find Full Text PDF