Commercially available near-infrared (NIR) dyes, including indocyanine green (ICG), display an end-tail of the fluorescence emission spectrum detectable in the short-wave infrared (SWIR) window. Imaging methods based on the second NIR spectral region (1,000-1,700 nm) are gaining interest within the biomedical imaging community due to minimal autofluorescence and scattering, allowing higher spatial resolution and depth sensitivity. Using a SWIR fluorescence imaging device, the properties of ICG vs.
View Article and Find Full Text PDFPurpose To investigate whether multispectral optoacoustic tomography (MSOT) developed for deep-tissue imaging in humans could enable the clinical assessment of major blood vessels and microvasculature. Materials and Methods The study was approved by the Institutional Review Board of the University Medical Center Groningen (CCMO-NL-43587) and registered in the Dutch National Trial Registry (NTR4125). The authors designed a real-time handheld optoacoustic scanner for human use, based on a concave 8-MHz transducer array, attaining 135° angular coverage.
View Article and Find Full Text PDFOptoacoustic imaging combines the rich contrast of optical methods with the resolution of ultrasound imaging. It can therefore deliver optical visualization of cancer far deeper in tissue than optical microscopy and other conventional optical imaging methods. Technological progress and novel contrast media have resulted in optoacoustic imaging being propagated to basic cancer research and in clinical translation projects.
View Article and Find Full Text PDFTherapeutic applications of gene silencing using siRNA have seen increasing interest over the past decade. The optimization of the delivery and biodistribution of siRNA using liposome-gold nanorod (AuNRs) nanoscale carriers can greatly benefit from adept imaging methods that can visualize the time-resolved delivery performance of such vectors. In this work, we describe the effect of AuNR length incorporated with liposomes and show their complexation with siRNA as a novel gene delivery vehicle.
View Article and Find Full Text PDFMultispectral optoacoustic tomography (MSOT) utilizes broadband ultrasound detection for imaging biologically-relevant optical absorption features at a range of scales. Due to the multiscale and multispectral features of the technology, MSOT comes with distinct requirements in implementation and data analysis. In this work, we investigate the interplay between scale, which depends on ultrasonic detection frequency, and optical multispectral spectral analysis, two dimensions that are unique to MSOT and represent a previously unexplored challenge.
View Article and Find Full Text PDFMultispectral optoacoustic tomography (MSOT) of functional and molecular contrast has the potential to find broad deployment in clinical practice. We have developed the first handheld MSOT imaging device with fast wavelength tuning achieving a frame rate of 50 Hz. In this Letter, we demonstrate its clinical potential by dynamically resolving multiple disease-relevant tissue chromophores, including oxy-/deoxyhemoglobin, and melanin, in human volunteers.
View Article and Find Full Text PDFObjectives: To investigate the feasibility of a high resolution optical imaging strategy for myocardial infarction.
Background: Near-infrared approaches to imaging cardiovascular disease enable visualization of disease-associated biological processes in vivo. However, even at the scale of small animals, the strong scattering of light prevents high resolution imaging after the first 1-2 mm of tissue, leading to degraded signal localization.
Brain research depends strongly on imaging for assessing function and disease in vivo. We examine herein multispectral opto-acoustic tomography (MSOT), a novel technology for high-resolution molecular imaging deep inside tissues. MSOT illuminates tissue with light pulses at multiple wavelengths and detects the acoustic waves generated by the thermoelastic expansion of the environment surrounding absorbing molecules.
View Article and Find Full Text PDFThe design of liposome-nanoparticle hybrids offers a rich toolbox for the fabrication of multifunctional modalities. A self-assembled liposome-gold nanorod hybrid vesicular system that consists of lipid-bilayer-associated gold nanorods designed to allow deep tissue detection, therapy, and monitoring in living animals using multispectral optoacoustic tomography has been fabricated and characterized in vitro and in vivo.
View Article and Find Full Text PDFObjective: Optical imaging is experiencing significant technologic advances. Simultaneously, an array of specific optical imaging agents has brought new capabilities to biomedical research and is edging toward clinical use. We review progress in the translation of macroscopic optical imaging-including fluorescence-guided surgery and endoscopy, intravascular fluorescence imaging, diffuse fluorescence and optical tomography, and multispectral optoacoustics (photoacoustics)-for applications ranging from tumor resection and assessment of atherosclerotic plaques to dermatologic and breast examinations.
View Article and Find Full Text PDFPurpose: To investigate whether multispectral optoacoustic tomography (MSOT) can reveal the heterogeneous distributions of exogenous agents of interest and vascular characteristics through tumors of several millimeters in diameter in vivo.
Materials And Methods: Procedures involving animals were approved by the government of Upper Bavaria. Imaging of subcutaneous tumors in mice was performed by using an experimental MSOT setup that produces transverse images at 10 frames per second with an in-plane resolution of approximately 150 μm.
Cardiac imaging in small animals is a valuable tool in basic biological research and drug discovery for cardiovascular disease. Multispectral optoacoustic tomography (MSOT) represents an emerging imaging modality capable of visualizing specific tissue chromophores at high resolution and deep in tissues in vivo by separating their spectral signatures. Whereas single-wavelength images can be acquired by multielement ultrasound detection in real-time imaging, using multiple wavelengths at separate times can lead to image blurring due to motion during acquisition.
View Article and Find Full Text PDFThe characterization of pharmacokinetic and biodistribution profiles is an essential step in the development process of new candidate drugs or imaging agents. Simultaneously, the assessment of organ function related to the uptake and clearance of drugs is of great importance. To this end, we demonstrate an imaging platform capable of high-rate characterization of the dynamics of fluorescent agents in multiple organs using multispectral optoacoustic tomography (MSOT).
View Article and Find Full Text PDFAims: Elevated expression of cathepsins, integrins and matrix metalloproteinases (MMPs) is typically associated with atherosclerotic plaque instability. While fluorescent tagging of such molecules has been amply demonstrated, no imaging method was so far shown capable of resolving these inflammation-associated tags with high fidelity and resolution beyond microscopic depths. This study is aimed at demonstrating a new method with high potential for noninvasive clinical cardiovascular diagnostics of vulnerable plaques using high-resolution deep-tissue multispectral optoacoustic tomography (MSOT) technology.
View Article and Find Full Text PDFMacroscopic visualization of functional and molecular features of cardiovascular disease is emerging as an important tool in basic research and clinical translation of new diagnostic and therapeutic strategies. We showcase the application of Multispectral Optoacoustic Tomography (MSOT) techniques to noninvasively image different aspects of the mouse cardiovascular system macroscopically in real-time and in vivo, an unprecedented ability compared to optical or optoacoustic (photoacoustic) imaging approaches documented so far. In particular, we demonstrate imaging of the carotid arteries, the aorta and the cardiac wall.
View Article and Find Full Text PDFA major difficulty arising from whole-body optoacoustic imaging is the long acquisition times associated with recording signals from multiple spatial projections. The acquired signals are also generally weak and the signal-to-noise-ratio is low, problems often solved by signal averaging, which complicates acquisition and increases acquisition times to an extent that makes many in vivo applications challenging or even impossible. Herein we present a fast acquisition multispectral optoacoustic tomography (MSOT) scanner for whole-body visualization of molecular markers in small animals.
View Article and Find Full Text PDF