Publications by authors named "Adrian Sulistio"

Article Synopsis
  • The study investigates a new method for treating osteoarthritis by using a polyurethane polymer linked to the anti-inflammatory drug diclofenac for direct injection into joints.
  • The polymer allows for controlled drug release, effectively delivering medication over a 15-day period, which may minimize common side effects associated with oral NSAIDs.
  • Animal testing showed that the polymer remains in the joints for an extended time and significantly reduces pain and inflammation, highlighting its potential for long-term osteoarthritis treatment.
View Article and Find Full Text PDF

An effective strategy to inhibit endocytosis in cancer cells is presented where modified net-type graphene oxide (GO) sheets, bound with multiple cell surface receptors, are introduced and synthesized as novel anticancer agents. The results suggest that the binding connects GO sheets with neighboring lipid rafts, neutralizes endocytosis, and causes metabolic deprivation. As a result, tumor cell survival and proliferation are reduced.

View Article and Find Full Text PDF

A facile synthesis method of polymer diclofenac conjugates (PDCs) based on biocompatible polyurethane chemistry that provides a high drug loading and offers a high degree of control over diclofenac (DCF) release kinetics is described. DCF incorporating monomer was reacted with ethyl-l-lysine diisocyanate (ELDI) and different amounts of polyethylene glycol (PEG) in a one-step synthesis to yield polymers with pendent diclofenac distributed along the backbone. By adjusting the co-monomers feed ratio, the drug loading could be tailored accordingly to give DCF loading of up to 38 w/w%.

View Article and Find Full Text PDF

With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy.

View Article and Find Full Text PDF

A recently developed visible light mediated photocontrolled radical polymerization technique using trithiocarbonates (i.e., conventional RAFT agents) as the sole control agent in the absence of additional photoinitiators or catalysts is utilized for the synthesis of core cross-linked star (CCS) polymer nanoparticles.

View Article and Find Full Text PDF

The formation of surface-grafted polypeptide films and interfaces via N-carboxyanhydride ring-opening polymerization (NCA-ROP) holds great potential for the facile preparation of next-generation multifunctional and responsive materials with excellent biocompatibility, biodegradability, tunable conformations and chemical functionalities. Therefore, the aim of this feature article is to provide a topical review of developments in the area of polypeptide films derived through NCA-ROP. It is evident that studies reported thus far have only started to unveil the full potential of peptide-based interfaces and materials, and with continued advancements it is anticipated that the strategic combination of NCA-ROP with modern synthetic chemistries will continue to yield versatile platforms for broader applications in the fields of polymer therapeutics, tissue engineering, (bio)nanocoatings, (bio)chemosensors, catalysis and separation technologies.

View Article and Find Full Text PDF

Cross-linked polypeptide-based films are fabricated via a novel and robust method employing surface-initiated ring opening polymerization of α-amino acid N-carboxyanhydrides (NCA-ROP). The judicious combination of amine-based hyperbranched macroinitiators and benzyl ester-protected NCA derivatives promotes network formation by cross-chain terminations, which allows the formation of stable cross-linked peptide-based capsules in a one-pot system.

View Article and Find Full Text PDF

Reversible vesicles from poly(L-glutamic acid)(65) -block-poly[(L-lysine)-ran-(L-3,4-dihydroxyphenylalanine)](75) [PLGA(65)-b-P(LL-r-DOPA)(75)] block copolypeptide adopt different configurations depending on the surrounding pH. At pH = 3, AFM and TEM images show ellipsoidal morphologies, whereas at pH = 12 both TEM and AFM reveal the formation of hollow vesicles. At pH = 12, the P(LL-r-DOPA) block forms the internal layer of the vesicle shell and the subsequent oxygen-mediated oxidation of the phenolic groups of the DOPA lead to the formation of quinonic intermediates, which undergo intermolecular dimerization to stabilize the vesicles via in situ cross-linking.

View Article and Find Full Text PDF

Amino acid-based core cross-linked star (CCS) polymers (poly(L-lysine)(arm)poly(L-cystine)(core)) with peripheral allyl functionalities were synthesized by sequential ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCAs) via the arm-first approach, using N-(trimethylsilyl)allylamine as the initiator. Subsequent functionalization with a poly(ethylene glycol) (PEG)-folic acid conjugate via thiol-ene click chemistry afforded poly(PEG-b-L-lysine)(arm)poly(L-cystine)(core) stars with outer PEG coronas decorated with folic acid targeting moieties. Similarly, a control was prepared without folic acid, using just PEG.

View Article and Find Full Text PDF

Highly functionalized water soluble core cross-linked star (CCS) polymers having degradable cores and hierarchical functionalities spanning from the peripheral groups along the arms to the core have been synthesized entirely from amino acid building blocks. The core-isolated moieties were shown to undergo further reactions, such as click chemistry, as well as being capable of encapsulating water-insoluble drugs.

View Article and Find Full Text PDF

Chemical modification of gelatin by a natural phenolic compound tannic acid (TA) at pH 8 was studied, and the properties of the modified gelatin materials were examined. The cross-linking effect was predominant when the TA content was lower, resulting in the formation of a partially insoluble cross-link network. The cross-linking structure was stable even under boiling, and the protein matrix became rigid, whereas the mechanical properties were enhanced.

View Article and Find Full Text PDF

Cross-linking gelatin with natural phenolic compound caffeic acid (CA) or tannic acid (TA) above pH 9 resulted in formation of insoluble hydrogels. The cross-linking reactivity was controlled by variation of pH, the concentration of the gelatin solution, or the amount of CA or TA used in the reaction. The cross-linking chemistry was studied by high-resolution NMR technique in both solution and solid state via investigation on small molecular model systems or using (13)C enriched caffeic acid (LCA) in the reaction with gelatin.

View Article and Find Full Text PDF