One key aspect of synthetic biology is the development and characterization of modular biological building blocks that can be assembled to construct integrated cell-based circuits performing computational functions. Likewise, the idea of extracting biological modules from the cellular context has led to the development of in vitro operating systems. This principle has attracted substantial interest to extend the repertoire of functional materials by connecting them with modules derived from synthetic biology.
View Article and Find Full Text PDFB-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map.
View Article and Find Full Text PDFMass spectrometry-based phosphoproteomic analysis is a powerful method for gaining a global, unbiased understanding of cellular signaling. Its accuracy and comprehensiveness stands or falls with the quality and choice of the applied phosphopeptide prefractionation strategy. This protocol covers a powerful but simple and rapid strategy for phosphopeptide prefractionation.
View Article and Find Full Text PDFB cell antigen receptor (BCR) signaling is critical for B cell development and activation. Using mass spectrometry, we identified a protein kinase D-interacting substrate of 220 kD (Kidins220)/ankyrin repeat-rich membrane-spanning protein (ARMS) as a novel interaction partner of resting and stimulated BCR. Upon BCR stimulation, the interaction increases in a Src kinase-independent manner.
View Article and Find Full Text PDFKindlins are a family of integrin adapter and cell-matrix adhesion proteins causally linked to human genetic disorders. Kindlin-2 is a ubiquitously expressed protein with manifold functions and interactions. The contribution of kindlin-2 to integrin-based cell-matrix adhesions has been extensively explored, while other integrin-independent roles emerge.
View Article and Find Full Text PDFHealthy aging depends on removal of damaged cellular material that is in part mediated by autophagy. The nutritional status of cells affects both aging and autophagy through as-yet-elusive metabolic circuitries. Here, we show that nucleocytosolic acetyl-coenzyme A (AcCoA) production is a metabolic repressor of autophagy during aging in yeast.
View Article and Find Full Text PDFUnder conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flux. To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment.
View Article and Find Full Text PDFProtein phosphorylation is an important mechanism of cellular signaling, and many proteins are precisely regulated through the interplay of stimulatory and inhibitory phosphorylation sites. Phosphoproteomics offers great opportunities to unravel this complex interplay, generating a mechanistic understanding of vital cellular processes. However, protein phosphorylation is substoichiometric and, in particular, peptides carrying multiple phosphorylation sites are extremely difficult to detect in a highly complex mixture of abundant nonphosphorylated peptides.
View Article and Find Full Text PDFKeratinocytes account for 95% of all cells of the epidermis, the stratified squamous epithelium forming the outer layer of the skin, in which a significant number of skin diseases takes root. Immortalized keratinocyte cell lines are often used as research model systems providing standardized, reproducible, and homogenous biological material. Apart from that, primary human keratinocytes are frequently used for medical studies because the skin provides an important route for drug administration and is readily accessible for biopsies.
View Article and Find Full Text PDFPhysiological functions of skin cells are often altered in diseases. Since the underlying molecular mechanisms are generally executed by proteins, it is of interest to assess protein dynamics in normal and pathologically altered cells. These can be readily analyzed in relevant cell culture models by quantitative mass spectrometry (MS)-based proteomics, which is the method of choice to track the concerted action and spatial relocation of unknown involved factors in an unbiased way.
View Article and Find Full Text PDFIn large-scale phosphoproteomics studies, fractionation by strong cation exchange (SCX) or electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is commonly used to reduce sample complexity, fractionate phosphopeptides from their unmodified counterparts, and increase the dynamic range for phosphopeptide identification. However, these procedures do not succeed to separate, both singly and multiply phosphorylated peptides due to their inverse physicochemical characteristics. Hence, depending on the chosen method only one of the two peptide classes can be efficiently separated.
View Article and Find Full Text PDFReversible phosphorylations play a critical role in most biological pathways. Hence, in signaling studies great effort has been put into identification of a maximum number of phosphosites per experiment. Mass spectrometry (MS)-based phosphoproteomics approaches have been proven to be an ideal analytical method for mapping of phosphosites.
View Article and Find Full Text PDFWe monitor proteome changes of primary human skin fibroblasts and keratinocytes during cell culture and compare them to respective immortalized cell lines using stable isotope labeling by amino acids to address their suitability as cell models for clinical disease proteomics.
View Article and Find Full Text PDF