Publications by authors named "Adrian Sheppard"

Diffusive transport has implications for the long-term status of underground storage of hydrogen (H_{2}) fuel and carbon dioxide (CO_{2}), technologies which are being pursued to mitigate climate change and advance the energy transition. Once injected underground, CO_{2} and H_{2} will exist in multiphase fluid-water-rock systems. The partially soluble injected fluids can flow through the porous rock in a connected plume, become disconnected and trapped as ganglia surrounded by groundwater within the storage rock pore space, and also dissolve and migrate through the aqueous phase once dissolved.

View Article and Find Full Text PDF

Foliar water uptake can recharge water storage tissue and enable greater hydration than through access to soil water alone; however, few studies have explored the role of the bark in facilitating water uptake. We investigated pathways and dynamics of bark water uptake (BWU) in stems of the mangrove Avicennia marina. We provide novel evidence that specific entry points control dynamics of water uptake through the outer bark surface.

View Article and Find Full Text PDF

Embolism refilling is thought to require relaxation of xylem tension, and it is unclear whether and how tall trees or plants growing in arid or saline soils recover from embolism. We tested whether foliar water uptake could enable embolism refilling in dehydrated twigs of the grey mangrove (Avicennia marina). Four dehydrated twigs were imaged by laboratory-based micro-computed tomography before and after wetting leaves.

View Article and Find Full Text PDF

Near-field x-ray refraction (phase) contrast is unavoidable in many lab-based micro-CT imaging systems. Quantitative analysis of x-ray refraction (a.k.

View Article and Find Full Text PDF

Conventional X-ray micro-computed tomography (μCT) is unable to meet the need for real-time, high-resolution, time-resolved imaging of multi-phase fluid flow. High signal-to-noise-ratio (SNR) data acquisition is too slow and results in motion artefacts in the images, while fast acquisition is too noisy and results in poor image contrast. We present a Bayesian framework for time-resolved tomography that uses priors to drastically reduce the required amount of experiment data.

View Article and Find Full Text PDF

We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011).

View Article and Find Full Text PDF

The reference scan method is a simple yet powerful method for measuring spatial drift of the x-ray spot during a low-cone-angle μ-CT experiment. As long as the drift is smooth, and occurring on a time scale that is long compared to the acquisition time of each projection, this method provides a way to compensate for the drift by applying 2D in-plane translations to the radiographs. Here we show that this compensation may be extended to the regime of high-magnification, high-cone-angle CT experiments where source drift perpendicular to the detector plane can cause significant magnification changes throughout the acquisition.

View Article and Find Full Text PDF

We present "dynamic tomography" algorithms that allow for the high-resolution, time-resolved imaging of dynamic (i.e., continuously time evolving) complex systems at existing x-ray micro-CT facilities.

View Article and Find Full Text PDF

We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e.

View Article and Find Full Text PDF

The pore-scale behavior of a nonaqueous phase liquid (NAPL) trapped as residual contamination in a porous medium, subject to freeze-thaw cycles, was investigated by X-ray microcomputed tomography. It is shown that freeze-thaw cycles cause significant NAPL remobilization in the direction of the freezing front, due to the rupture and transport of a significant proportion of (supposedly entrapped) larger multipore NAPL ganglia. Significant NAPL remains in place, however, due to substantial ganglion fragmentation into single- and subpore ganglia.

View Article and Find Full Text PDF

In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds.

View Article and Find Full Text PDF

We describe a robust method for determining morphological properties of filamentous biopolymer networks, such as collagen or other connective tissue matrices, from confocal microscopy image stacks. Morphological properties including pore size distributions and percolation thresholds are important for transport processes, e.g.

View Article and Find Full Text PDF

The three-dimensional (3D) structure and architecture of biomaterial scaffolds play a critical role in bone formation as they affect the functionality of the tissue-engineered constructs. Assessment techniques for scaffold design and their efficacy in bone ingrowth studies require an ability to accurately quantify the 3D structure of the scaffold and an ability to visualize the bone regenerative processes within the scaffold structure. In this paper, a 3D micro-CT imaging and analysis study of bone ingrowth into tissue-engineered scaffold materials is described.

View Article and Find Full Text PDF

This paper illustrates the utility of micro-computed tomography (micro-CT) to study the process of tissue engineered bone growth. A micro-CT facility for imaging and visualising biomaterials in three dimensions (3D) is described. The facility is capable of acquiring 3D images made up of 2000(3) voxels on specimens up to 60mm in extent with resolutions down to 2 microm.

View Article and Find Full Text PDF

We give numerical estimates for the site percolation trapping thresholds for invasion percolation on various three dimensional lattices. We find that in most cases the thresholds for invasion and ordinary percolation coincide. However, for coordination numbers less than five the thresholds diverge.

View Article and Find Full Text PDF

Employing highly efficient algorithms for simulating invasion percolation (IP) with trapping, we obtain precise estimates for the fractal dimensions of the sample-spanning cluster, the backbone, and the minimal path in a variety of two-dimensional lattices. The results indicate that these quantities are nonuniversal and vary with the coordination number Z of the lattices. In particular, while the fractal dimension D(f) of the sample-spanning cluster in lattices with low Z has the generally accepted value of about 1.

View Article and Find Full Text PDF