Publications by authors named "Adrian Schwartz-Mittelman"

To explore the role of the HLH subdomain in bHLHZ proteins, we designed sets of minimalist proteins based on bHLHZ protein Max, bHLH/PAS protein Arnt and bZIP protein C/EBP. In the first, the Max bHLH and C/EBP leucine zipper were fused such that the leucine heptad repeats were not in register; therefore, the protein dimerization interface was disrupted. Max1bHLH-C/EBP showed little ability to activate transcription from the E-box (5'-CACGTG) in the yeast one-hybrid assay, and no E-box binding by quantitative fluorescence anisotropy.

View Article and Find Full Text PDF

The goal of this study was to determine the effects of various compounds on the 17-beta-estradiol-induced dimerization of the human estrogen receptor alpha (hERalpha), a nuclear transcription factor. For this purpose, we used a modified yeast two-hybrid (YTH) bioassay designed to study protein-protein interactions, based on the electrochemical monitoring of hERalpha dimerization and detected as beta-D-galactosidase reporter gene activity in a synthetic substrate p-aminophenyl-beta-D-galactopyranoside (pAPG). Compared with 17-beta-estradiol activity, genistein, bisphenol-A (BPA), and naringenin induced dimerization to a lower extent by four, five and six magnitudes of orders of magnitude, respectively.

View Article and Find Full Text PDF

We describe a reporter phagemid system for the specific amperometric detection of bacteria. We constructed a phagemid a bacteriophage containing a bacterial plasmid using the M13KO7 helper phage and a commercial plasmid, pFLAG-ATS-BAP, which contains a gene encoding for a reporter enzyme, alkaline phosphatase. In the bacteria, the enzyme reacts with the substrate, p-aminophenyl phosphate, in the periplamic space that separates the outer plasma membrane from the cell wall.

View Article and Find Full Text PDF