Publications by authors named "Adrian R Orszulak"

Background: Herpes simplex virus (HSV-1) has been associated with molecular and cellular signatures associated with Alzheimer's disease (AD). We explored the use of both recent single-cell and bulk transcriptomics technologies in dissecting the molecular and cellular virus-human interactions with HSV-1 infected cerebral organoids (2D and 3D). We compared the results with our previous observations from bulk RNA sequencing and discovered novel insights into HSV-1 induced AD-associated molecular pathology that were made possible by each transcriptomics technology.

View Article and Find Full Text PDF

Introduction: While there may be microbial contributions to Alzheimer's disease (AD), findings have been inconclusive. We recently reported an AD-associated CD83(+) microglia subtype associated with increased immunoglobulin G4 (IgG4) in the transverse colon (TC).

Methods: We used immunohistochemistry (IHC), IgG4 repertoire profiling, and brain organoid experiments to explore this association.

View Article and Find Full Text PDF

Viral infections leading to inflammation have been implicated in several common diseases, such as Alzheimer's disease (AD) and type 1 diabetes (T1D). Of note, herpes simplex virus 1 (HSV-1) has been reported to be associated with AD. We sought to identify the transcriptomic changes due to HSV-1 infection and anti-viral drug (acyclovir, ACV) treatment of HSV-1 infection in dissociated cells from human cerebral organoids (dcOrgs) versus stem cell-derived pancreatic islets (sc-islets) to gain potential biological insights into the relevance of HSV-1-induced inflammation in AD and T1D.

View Article and Find Full Text PDF

Perhaps one of the most revolutionary next generation sequencing technologies is single-cell (SC) transcriptomics, which was recognized by Nature in 2013 as the method of the year. SC-technologies delve deep into genomics at the single-cell level, revealing previously restricted, valuable information on the identity of single cells, particularly highlighting their heterogeneity. Understanding the cellular heterogeneity of complex tissue provides insight about the gene expression and regulation across different biological and environmental conditions.

View Article and Find Full Text PDF