Publications by authors named "Adrian Potari"

Current theories of human neural development emphasize the posterior-to-anterior pattern of brain maturation. However, this scenario leaves out significant brain areas not directly involved with sensory input and behavioral control. Suggesting the relevance of cortical activity unrelated to sensory stimulation, such as sleep, we investigated adolescent transformations in the topography of sleep spindles.

View Article and Find Full Text PDF

Sleep spindles are developmentally relevant cortical oscillatory patterns; however, they have mostly been studied by considering the entire spindle frequency range (11-15 Hz) without a distinction between the functionally and topographically different slow and fast spindles, using relatively few electrodes and analysing wide age-ranges. Here, we employ high-density night sleep electroencephalography in three age-groups between 12 and 20 years of age (30 females and 30 males) and analyse the adolescent developmental pattern of the four major parameters of slow and fast sleep spindles. Most of our findings corroborate those very few previous studies that also make a distinction between slow and fast spindles in their developmental analysis.

View Article and Find Full Text PDF

Features of sleep were shown to reflect aging, typical sex differences and cognitive abilities of humans. However, these measures are characterized by redundancy and arbitrariness. Our present approach relies on the assumptions that the spontaneous human brain activity as reflected by the scalp-derived electroencephalogram (EEG) during non-rapid eye movement (NREM) sleep is characterized by arrhythmic, scale-free properties and is based on the power law scaling of the Fourier spectra with the additional consideration of the rhythmic, oscillatory waves at specific frequencies, including sleep spindles.

View Article and Find Full Text PDF

The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual "EEG fingerprint". Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males.

View Article and Find Full Text PDF

Impaired sleep is a frequent complaint in ageing and a risk factor for many diseases. Non-rapid eye movement (NREM) sleep EEG delta power reflects neural plasticity and, in line with age-related cognitive decline, decreases with age. Individuals with higher general intelligence are less affected by age-related cognitive decline or other disorders and have longer lifespans.

View Article and Find Full Text PDF

Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet.

View Article and Find Full Text PDF