Oxygen-ion conductors have traditionally been studied in the context of high temperature (≈ 873 to 1773 K) energy conversion and sensor technologies. However, there is growing interest in exploring ion-based electronics for harsh environments (400 to 573 K) that represents an emerging field. Here, we utilize a blocking electrode to modify the interface properties of oxygen-ion conducting yttria-stabilized zirconia (YSZ) thin film electrochemical cells.
View Article and Find Full Text PDFOrdering of ferroelectric polarization and its trajectory in response to an electric field are essential for the operation of non-volatile memories, transducers and electro-optic devices. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature, where tunability is compromised.
View Article and Find Full Text PDFThe crystallization of amorphous germanium telluride (GeTe) thin films is controlled with nanoscale resolution using the heat from a thermal AFM probe. The dramatic differences between the amorphous and crystalline GeTe phases yield embedded nanoscale features with strong topographic, electronic, and optical contrast. The flexibility of scanning probe lithography enables the width and depth of the features, as well as the extent of their crystallization, to be controlled by varying probe temperature and write speed.
View Article and Find Full Text PDFWe show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
View Article and Find Full Text PDF