Publications by authors named "Adrian P Kells"

Glial cell line-derived neurotrophic factor (GDNF) is a potent neuroprotective biologic in Parkinson's disease models. Adeno-associated viral vector serotype 2 (AAV2)-human GDNF safety was assessed in rats treated with a single intracerebral dose of vehicle, 6.8 × 10, 6.

View Article and Find Full Text PDF

Loss of nigrostriatal dopaminergic projection neurons is a key pathology in Parkinson's disease, leading to abnormal function of basal ganglia motor circuits and the accompanying characteristic motor features. A number of intraparenchymally delivered gene therapies designed to modify underlying disease and/or improve clinical symptoms have shown promise in preclinical studies and subsequently were evaluated in clinical trials. Here we review the challenges with surgical delivery of gene therapy vectors that limited therapeutic outcomes in these trials, particularly the lack of real-time monitoring of vector administration.

View Article and Find Full Text PDF

The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN).

View Article and Find Full Text PDF

Objective: To understand the safety, putaminal coverage, and enzyme expression of adeno-associated viral vector serotype-2 encoding the complementary DNA for the enzyme, aromatic L-amino acid decarboxylase (VY-AADC01), delivered using novel intraoperative monitoring to optimize delivery.

Methods: Fifteen subjects (three cohorts of 5) with moderately advanced Parkinson's disease and medically refractory motor fluctuations received VY-AADC01 bilaterally coadministered with gadoteridol to the putamen using intraoperative magnetic resonance imaging (MRI) guidance to visualize the anatomic spread of the infusate and calculate coverage. Cohort 1 received 8.

View Article and Find Full Text PDF

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC) in AADC-deficient children.

View Article and Find Full Text PDF

Moderate social consumption of alcohol is common; however, only a small percentage of individuals transit from social to excessive, uncontrolled alcohol drinking. This suggests the existence of protective mechanisms that prevent the development of alcohol addiction. Here, we tested the hypothesis that the glial cell line-derived neurotrophic factor (GDNF) in the mesolimbic system [e.

View Article and Find Full Text PDF

When nanoparticles/proteins are infused into the brain, they are often transported to distal sites in a manner that is dependent both on the characteristics of the infusate and the region targeted. We have previously shown that adeno-associated virus (AAV) is disseminated within the brain by perivascular flow and also by axonal transport. Perivascular distribution usually does not depend strongly on the nature of the infusate.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in survival motor neuron 1 (SMN1). Previously, we showed that central nervous system (CNS) delivery of an adeno-associated viral (AAV) vector encoding SMN1 produced significant improvements in survival in a mouse model of SMA. Here, we performed a dose-response study in SMA mice to determine the levels of SMN in the spinal cord necessary for efficacy, and measured the efficiency of motor neuron transduction in the spinal cord after intrathecal delivery in pigs and nonhuman primates (NHPs).

View Article and Find Full Text PDF

Many studies have demonstrated that adeno-associated virus serotype 9 (AAV9) transduces astrocytes and neurons when infused into rat or nonhuman primate (NHP) brain. We previously showed in rats that transduction of antigen-presenting cells (APC) by AAV9 encoding a foreign protein triggered a full neurotoxic immune response. Accordingly, we asked whether this phenomenon occurred in NHP.

View Article and Find Full Text PDF

This study presents a computational tool for auto-segmenting the distribution of brain infusions observed by magnetic resonance imaging. Clinical usage of direct infusion is increasing as physicians recognize the need to attain high drug concentrations in the target structure with minimal off-target exposure. By co-infusing a Gadolinium-based contrast agent and visualizing the distribution using real-time using magnetic resonance imaging, physicians can make informed decisions about when to stop or adjust the infusion.

View Article and Find Full Text PDF

Protein aggregation as a result of misfolding is a common theme underlying neurodegenerative diseases. Accordingly, most recent studies aim to prevent protein misfolding and/or aggregation as a strategy to treat these pathologies. For instance, state-of-the-art approaches, such as silencing protein overexpression by means of RNA interference, are being tested with positive outcomes in preclinical models of animals overexpressing the corresponding protein.

View Article and Find Full Text PDF

The present study builds on previous work showing that infusion of adeno-associated virus type 9 (AAV9) into the cisterna magna (CM) of nonhuman primates resulted in widespread transduction throughout cortex and spinal cord. Transduction efficiency was severely limited, however, by the presence of circulating anti-AAV antibodies. Accordingly, we compared AAV9 to a related serotype, AAV7, which has a high capsid homology.

View Article and Find Full Text PDF

In 1873 Camillo Golgi discovered a staining technique that allowed for the visualization of whole neurons within the brain, initially termed 'the black reaction' and is now known as Golgi impregnation. Despite the capricious nature of this method, Golgi impregnation remains a widely used method for whole neuron visualization and analysis of dendritic arborization and spine quantification. We describe a series of reliable, modified 'Golgi-Cox' impregnation methods that complement some existing methods and have several advantages over traditional whole brain 'Golgi' impregnation.

View Article and Find Full Text PDF

Niemann-Pick disease is a lysosomal storage disorder resulting from inherited deficiency in acid sphingomyelinase (ASM). Use of adeno-associated virus serotype 2 (AAV2) to deliver human acid sphingomyelinase (hASM) is currently being explored as a means to treat the devastating neurological features of NPD, which are refractory to traditional enzyme replacement therapy. In this study, we evaluated the long-term efficacy and safety of AAV2-hASM after direct infusion into the CNS of nonhuman primates.

View Article and Find Full Text PDF

Widespread distribution of gene products at clinically relevant levels throughout the CNS has been challenging. Adeno-associated virus type 9 (AAV9) vector has been reported as a good candidate for intravascular gene delivery, but low levels of preexisting antibody titers against AAV in the blood abrogate cellular transduction within the CNS. In the present study we compared the effectiveness of vascular delivery and cerebrospinal fluid (CSF) delivery of AAV9 in transducing CNS tissue in nonhuman primates.

View Article and Find Full Text PDF

In this review, we discuss recent developments in the delivery of adeno-associated virus-based vectors (AAV), particularly with respect to the role of axonal transport in vector distribution in the brain. The use of MRI-guidance and new stereotactic aiming devices have now established a strong foundation for neurological gene therapy to become an accepted procedure in interventional neurology.

View Article and Find Full Text PDF

Delivery of neurotrophic factors to treat neurodegenerative diseases has not been efficacious in clinical trials despite their known potency for promoting neuronal growth and survival. Direct gene delivery to the brain offers an approach for establishing sustained expression of neurotrophic factors but is dependent on accurate surgical procedures to target specific anatomical regions of the brain. Serotype-2 adeno-associated viral (AAV2) vectors have been investigated in multiple clinical studies for neurological diseases without adverse effects; however the absence of significant clinical efficacy after neurotrophic factor gene transfer has been largely attributed to insufficient coverage of the target region.

View Article and Find Full Text PDF

Degeneration of nigrostriatal neurons in Parkinson's disease (PD) causes progressive loss of aromatic l-amino acid decarboxylase (AADC), the enzyme that converts levodopa (l-DOPA) into dopamine in the striatum. Because loss of this enzyme appears to be a major driver of progressive impairment of response to the mainstay drug, l-DOPA, one promising approach has been to use gene therapy to restore AADC activity in the human putamen and thereby restore normal l-DOPA response in patients with PD. An open-label phase I clinical trial of this approach in patients with PD provided encouraging signs of improvement in Unified Parkinson's Disease Rating Scale scores and reductions in antiparkinsonian medications.

View Article and Find Full Text PDF

Effects of silencing ectopically expressed hSNCA in rat substantia nigra (SN) were examined as a novel therapeutic approach to Parkinson's disease (PD). AAV-hSNCA with or without an AAV harboring a short-hairpin (sh)RNA targeting hSNCA or luciferase was injected into one SN. At 9weeks, hSNCA-expressing rats had reduced SN dopamine (DA) neurons and exhibited a forelimb deficit.

View Article and Find Full Text PDF

Background/aims: A skull-mounted aiming device and integrated software platform has been developed for MRI-guided neurological interventions. In anticipation of upcoming gene therapy clinical trials, we adapted this device for real-time convection-enhanced delivery of therapeutics via a custom-designed infusion cannula. The targeting accuracy of this delivery system and the performance of the infusion cannula were validated in nonhuman primates.

View Article and Find Full Text PDF

Clinical trials involving direct infusion of neurotrophic therapies for Parkinson's disease (PD) have suffered from poor coverage of the putamen. The planned use of a novel interventional-magnetic resonance imaging (iMRI) targeting system for achieving precise, real-time convection-enhanced delivery in a planned clinical trial of adeno-associated virus serotype 2 (AAV2)-glial-derived neurotrophic factor (GDNF) in PD patients was modeled in nonhuman primates (NHP). NHP received bilateral coinfusions of gadoteridol (Gd)/AAV2-GDNF into two sites in each putamen, and three NHP received larger infusion volumes in the thalamus.

View Article and Find Full Text PDF

Loss of dopaminergic neurons is primarily responsible for the onset and progression of Parkinson's disease (PD); thus, neuroprotective and/or neuroregenerative strategies remain critical to the treatment of this increasingly prevalent disease. Here we explore a novel approach to neurotrophic factor-based therapy by engineering zinc finger protein transcription factors (ZFP TFs) that activate the expression of the endogenous glial cell line-derived neurotrophic factor (GDNF) gene. We show that GDNF activation can be achieved with exquisite genome-wide specificity.

View Article and Find Full Text PDF

We elucidated the effects of parkinsonian degeneration on trafficking of AAV2-GDNF in the nigro-striatum (nigro-ST) of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. Vector infused into striatum (ST) was transported to substantia nigra (SN), both pars compacta (SNc), and pars reticulata (SNr). In the lesioned hemisphere, glial cell line-derived neurotrophic factor (GDNF) immunoreactivity was only found in SNr consistent with elimination of SNc dopaminergic (DA) neurons by 6-OHDA.

View Article and Find Full Text PDF

Clinical studies to date have failed to establish therapeutic benefit of glial cell-derived neurotrophic factor (GDNF) in Parkinson's disease (PD). In contrast to previous nonclinical neuroprotective reports, this study shows clinically relevant and long-lasting regeneration of the dopaminergic system in rhesus macaques lesioned with 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine 3-6 months before GDNF gene delivery (AAV2-GDNF). The observed progressive amelioration of functional deficits, recovery of dopamine, and regrowth of fibers to the striatal neuropil demonstrate that high GDNF expression in the putamen promotes restoration of the dopaminergic system in a primate model of advanced PD.

View Article and Find Full Text PDF

Gene therapies that utilize convention-enhanced delivery (CED) will require close monitoring of vector infusion in real time and accurate prediction of drug distribution. The magnetic resonance imaging (MRI) contrast agent, Gadoteridol (Gd), was used to monitor CED infusion and to predict the expression pattern of glial cell line-derived neurotrophic factor (GDNF) protein after administration of adeno-associated virus type 2 (AAV2) vector encoding human pre-pro-GDNF complementary DNA. The nonhuman primate (NHP) thalamus was utilized for modeling infusion to allow delivery of volumes more relevant to planned human studies.

View Article and Find Full Text PDF