Publications by authors named "Adrian O Stec"

Since the dawn of agriculture, crops have been genetically altered for desirable characteristics. This has included the selection of natural and induced mutants. Increasing the production of plant oils such as soybean () oil as a renewable resource for food and fuel is valuable.

View Article and Find Full Text PDF

Soybean breeding relies on the use of wild (Glycine soja Sieb. and Zucc.) and domesticated [Glycine max (L.

View Article and Find Full Text PDF

The β-ketoacyl-[acyl carrier protein] synthase 1 () gene has been shown in model plant systems to be critical for the conversion of sucrose to oil. A previous study characterized the morphological and seed composition phenotypes associated with a reciprocal chromosomal translocation that disrupted one of the genes in soybean. The principle findings of this work included a wrinkled seed phenotype, an increase in seed sucrose, a decrease in seed oil, and a low frequency of transmission of the translocation.

View Article and Find Full Text PDF

Background: As with many plant species, current genome editing strategies in soybean are initiated by stably transforming a gene that encodes an engineered nuclease into the genome. Expression of the transgene results in a double-stranded break and repair at the targeted locus, oftentimes resulting in mutation(s) at the intended site. As soybean is a self-pollinating species with 20 chromosome pairs, the transgene(s) in the T0 plant are generally expected to be unlinked to the targeted mutation(s), and the transgene(s)/mutation(s) should independently assort into the T1 generation, resulting in Mendellian combinations of transgene presence/absence and allelic states within the segregating family.

View Article and Find Full Text PDF

Developments in genomic and genome editing technologies have facilitated the mapping, cloning, and validation of genetic variants underlying trait variation. This study combined bulked-segregant analysis, array comparative genomic hybridization, and CRISPR/Cas9 methodologies to identify a CPR5 ortholog essential for proper trichome growth in soybean (Glycine max). A fast neutron mutant line exhibited short trichomes with smaller trichome nuclei compared to its parent line.

View Article and Find Full Text PDF

Background: Soybean is subjected to genetic manipulation by breeding, mutation, and transgenic approaches to produce value-added quality traits. Among those genetic approaches, mutagenesis through fast neutrons radiation is intriguing because it yields a variety of mutations, including single/multiple gene deletions and/or duplications. Characterizing the seed composition of the fast neutron mutants and its relationship with gene mutation is useful towards understanding oil and protein traits in soybean.

View Article and Find Full Text PDF

Background: The effective use of mutant populations for reverse genetic screens relies on the population-wide characterization of the induced mutations. Genome- and population-wide characterization of the mutations found in fast neutron populations has been hindered, however, by the wide range of mutations generated and the lack of affordable technologies to detect DNA sequence changes. In this study, we therefore aimed to test whether genotyping-by-sequencing (GBS) technology could be used to characterize copy number variation (CNV) induced by fast neutrons in a soybean mutant population.

View Article and Find Full Text PDF

Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses recent advancements in CRISPR/Cas9 genome editing technology, specifically its application to soybean and other plant species.
  • - It outlines updated protocols for targeting single and multiple genes both in soybean and in different plant systems, including methods for delivering the necessary reagents.
  • - Successful results have been achieved, with transgenic soybean plants created that have mutations in up to three targeted genes using the described techniques.
View Article and Find Full Text PDF

Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene.

View Article and Find Full Text PDF

Mutagenesis is a useful tool in many crop species to induce heritable genetic variability for trait improvement and gene discovery. In this study, forward screening of a soybean fast neutron (FN) mutant population identified an individual that produced seed with nearly twice the amount of sucrose (8.1% on dry matter basis) and less than half the amount of oil (8.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates genomic variations in soybean plants created through genetic transformation and fast neutron-induced mutations, focusing on the frequency and types of variations.
  • Transgenic plants show significantly fewer structural variations compared to fast neutron mutants and natural cultivars, with variations mostly occurring near the transgenes.
  • The findings suggest that genetic transformations introduce minimal novel genetic variation, indicating that such events are similar to those found naturally or from other mutation processes, though applicability to other crops remains uncertain.
View Article and Find Full Text PDF
Article Synopsis
  • Fast neutron radiation is being used as a tool to create mutant soybean plants, but the effects on their genomes are not fully understood.
  • A study of 264 soybean plants showed that while deletion rates match previous findings, there were unexpectedly high rates of segmental duplications, particularly at chromosome ends.
  • The research identified specific chromosomal changes linked to traits, including a large deletion affecting seed composition and a duplication associated with a short petiole phenotype, highlighting the potential of these mutants for studying genetic variations.
View Article and Find Full Text PDF

Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max) accessions serving as parents in a soybean nested association mapping population for deletions and duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing methods were used as complementary technologies to identify SV in 1528 genes, or approximately 2.

View Article and Find Full Text PDF

Near isogenic lines (NILs) are a critical genetic resource for the soybean research community. The ability to identify and characterize the genes driving the phenotypic differences between NILs is limited by the degree to which differential genetic introgressions can be resolved. Furthermore, the genetic heterogeneity extant among NIL sub-lines is an unaddressed research topic that might have implications for how genomic and phenotypic data from NILs are utilized.

View Article and Find Full Text PDF

Oat-maize addition (OMA) lines with one, or occasionally more, chromosomes of maize (Zea mays L., 2n = 2x = 20) added to an oat (Avena sativa L., 2n = 6x = 42) genomic background can be produced via embryo rescue from sexual crosses of oat x maize.

View Article and Find Full Text PDF

Centromere positions on 7 maize chromosomes were compared on the basis of data from 4 to 6 mapping techniques per chromosome. Centromere positions were first located relative to molecular markers by means of radiation hybrid lines and centric fission lines recovered from oat-maize chromosome addition lines. These centromere positions were then compared with new data from centric fission lines recovered from maize plants, half-tetrad mapping, and fluorescence in situ hybridizations and to data from earlier studies.

View Article and Find Full Text PDF

We have developed from crosses of oat (Avena sativa L.) and maize (Zea mays L.) 50 fertile lines that are disomic additions of individual maize chromosomes 1-9 and chromosome 10 as a short-arm telosome.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session70ftvdcao7c3prg6sts2femo1cek2mgc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once