Publications by authors named "Adrian Nestor"

The intention to act influences the computations of various task-relevant features. However, little is known about the time course of these computations. Furthermore, it is commonly held that these computations are governed by conjunctive neural representations of the features.

View Article and Find Full Text PDF

Personality traits and affective states are associated with biases in facial emotion perception. However, the precise personality impairments and affective states that underlie these biases remain largely unknown. To investigate how relevant factors influence facial emotion perception and recollection, Experiment 1 employed an image reconstruction approach in which community-dwelling adults (N = 89) rated the similarity of pairs of facial expressions, including those recalled from memory.

View Article and Find Full Text PDF

Extensive work has investigated the neural processing of single faces, including the role of shape and surface properties. However, much less is known about the neural basis of face ensemble perception (e.g.

View Article and Find Full Text PDF

Damage to the medial temporal lobe (MTL), which is traditionally considered to subserve memory exclusively, has been reported to contribute to impaired face perception. However, it remains unknown how exactly such brain lesions may impact face representations and in particular facial shape and surface information, both of which are crucial for face perception. The present study employed a behavioral-based image reconstruction approach to reveal the pictorial representations of face perception in two amnesic patients: DA, who has an extensive bilateral MTL lesion that extends beyond the MTL in the right hemisphere, and BL, who has damage to the hippocampal dentate gyrus (DG).

View Article and Find Full Text PDF

Extensive work has demonstrated an age-related decline in face recognition, but the nature and the extent of aging-related alterations in face representations remain unclear. Here, we address these issues using an image reconstruction approach to reveal the content of visual representations. Healthy young and older adults provided similarity judgments for pairs of face images.

View Article and Find Full Text PDF

Through ensemble encoding, the visual system compresses redundant statistical properties from multiple items into a single summary metric (e.g., average size).

View Article and Find Full Text PDF

Recent research has demonstrated that neural and behavioral data acquired in response to viewing face images can be used to reconstruct the images themselves. However, the theoretical implications, promises, and challenges of this direction of research remain unclear. We evaluate the potential of this research for elucidating the visual representations underlying face recognition.

View Article and Find Full Text PDF

Recent investigations have focused on the spatiotemporal dynamics of visual recognition by appealing to pattern analysis of EEG signals. While this work has established the ability to decode identity-level information (such as the identity of a face or of a word) from neural signals, much less is known about the precise nature of the signals that support such feats, their robustness across visual categories, or their consistency across human participants. Here, we address these questions through the use of EEG-based decoding and multivariate feature selection as applied to three visual categories: words, faces and face ensembles (i.

View Article and Find Full Text PDF

The frontoparietal networks underlying grasping movements have been extensively studied, especially using fMRI. Accordingly, whereas much is known about their cortical locus much less is known about the temporal dynamics of visuomotor transformations. Here, we show that multivariate EEG analysis allows for detailed insights into the time course of visual and visuomotor computations of precision grasps.

View Article and Find Full Text PDF

Extensive behavioral work has documented the ability of the human visual system to extract summary representations from face ensembles (e.g., the average identity of a crowd of faces).

View Article and Find Full Text PDF

Investigations into the neural basis of reading have shed light on the cortical locus and the functional role of visual-orthographic processing. Yet, the fine-grained structure of neural representations subserving reading remains to be clarified. Here, we capitalize on the spatiotemporal structure of electroencephalography (EEG) data to examine if and how EEG patterns can serve to decode and reconstruct the internal representation of visually presented words in healthy adults.

View Article and Find Full Text PDF

Ensemble encoding refers to the visual system's ability to extract a summary representation from multiple items in a set-such as the mean identity of faces in a crowd-circumventing capacity limitations in visual working memory. In the present study we investigated face ensemble representations of higher level identity and lower level viewpoint with the aim of elucidating the extent of their overlap or independence. To this end, we used ensemble displays consisting of six face stimuli which could vary in identity, viewpoint, or both.

View Article and Find Full Text PDF

There has been much interest in how the hippocampus codes time in support of episodic memory. Notably, while rodent hippocampal neurons, including populations in subfield CA1, have been shown to represent the passage of time in the order of seconds between events, there is limited support for a similar mechanism in humans. Specifically, there is no clear evidence that human hippocampal activity during long-term memory processing is sensitive to temporal duration information that spans seconds.

View Article and Find Full Text PDF

The significance of shape and surface information for face perception is well established, yet their relative contribution to recognition and their neural underpinnings await clarification. Here, we employ image reconstruction to retrieve, assess and visualize such information using behavioral, electroencephalography and functional magnetic resonance imaging data. Our results indicate that both shape and surface information can be successfully recovered from each modality but that the latter is better recovered than the former, consistent with its key role for face representations.

View Article and Find Full Text PDF

Investigations of functional (re)organization in children who have undergone large cortical resections offer a unique opportunity to elucidate the nature and extent of cortical plasticity. We report findings from a 3-year investigation of a child, U.D.

View Article and Find Full Text PDF

Uncovering the neural dynamics of facial identity processing along with its representational basis outlines a major endeavor in the study of visual processing. To this end, here, we record human electroencephalography (EEG) data associated with viewing face stimuli; then, we exploit spatiotemporal EEG information to determine the neural correlates of facial identity representations and to reconstruct the appearance of the corresponding stimuli. Our findings indicate that multiple temporal intervals support: facial identity classification, face space estimation, visual feature extraction and image reconstruction.

View Article and Find Full Text PDF

Visual memory for faces has been extensively researched, especially regarding the main factors that influence face memorability. However, what we remember exactly about a face, namely, the pictorial content of visual memory, remains largely unclear. The current work aims to elucidate this issue by reconstructing face images from both perceptual and memory-based behavioural data.

View Article and Find Full Text PDF

Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli.

View Article and Find Full Text PDF

Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study.

View Article and Find Full Text PDF

An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data.

View Article and Find Full Text PDF

The reconstruction of images from neural data can provide a unique window into the content of human perceptual representations. Although recent efforts have established the viability of this enterprise using functional magnetic resonance imaging (MRI) patterns, these efforts have relied on a variety of prespecified image features. Here, we take on the twofold task of deriving features directly from empirical data and of using these features for facial image reconstruction.

View Article and Find Full Text PDF

The ability to recognize faces accurately and rapidly is an evolutionarily adaptive process. Most studies examining the neural correlates of face perception in adult humans have focused on a distributed cortical network of face-selective regions. There is, however, robust evidence from phylogenetic and ontogenetic studies that implicates subcortical structures, and recently, some investigations in adult humans indicate subcortical correlates of face perception as well.

View Article and Find Full Text PDF

The concept of psychological face space lies at the core of many theories of face recognition and representation. To date, much of the understanding of face space has been based on principal component analysis (PCA); the structure of the psychological space is thought to reflect some important aspects of a physical face space characterized by PCA applications to face images. In the present experiments, we investigated alternative accounts of face space and found that independent component analysis provided the best fit to human judgments of face similarity and identification.

View Article and Find Full Text PDF

What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex.

View Article and Find Full Text PDF