Publications by authors named "Adrian Mehrtash"

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway that ensures misfolded proteins are removed from the ER and destroyed. In ERAD, membrane and luminal substrates are ubiquitylated by ER-resident RING-type E3 ubiquitin ligases, retrotranslocated into the cytosol, and degraded by the proteasome. Overexpression of ERAD factors is frequently used in yeast and mammalian cells to study this process.

View Article and Find Full Text PDF

In ER-associated degradation (ERAD), misfolded ER proteins are degraded by the proteasome after undergoing ubiquitylation. Yeast Doa10 (human MARCHF6/TEB4) is a membrane-embedded E3 ubiquitin ligase that functions with E2s Ubc6 and Ubc7. Ubc6 attaches a single ubiquitin to substrates, which is extended by Ubc7 to form a polyubiquitin chain.

View Article and Find Full Text PDF

Protein ubiquitylation is an important posttranslational modification affecting a wide range of cellular processes. Due to the low abundance of ubiquitylated species in biological samples, considerable effort has been spent on methods to purify and detect ubiquitylated proteins. We have developed and characterized a novel tool for ubiquitin detection and purification based on OtUBD, a high-affinity ubiquitin-binding domain (UBD) derived from an Orientia tsutsugamushi deubiquitylase (DUB).

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress occurs when the abundance of unfolded proteins in the ER exceeds the capacity of the folding machinery. Despite the expanding cadre of characterized cellular adaptations to ER stress, knowledge of the effects of ER stress on cellular physiology remains incomplete. We investigated the impact of ER stress on ER and inner nuclear membrane protein quality control mechanisms in We analyzed the turnover of substrates of four ubiquitin ligases (Doa10, Rkr1/Ltn1, Hrd1, and the Asi complex) and the metalloprotease Ste24 in induced models of ER stress.

View Article and Find Full Text PDF

Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell.

View Article and Find Full Text PDF

The gene encoding Aspergillus nidulans acetamidase (amdS) was placed under control of Candida albicans ACT1 promoter and terminator sequences and then cloned into a plasmid containing C. glabrata ARS10,CEN8 or ARS10+CEN8 sequences. All plasmids transformed C.

View Article and Find Full Text PDF