We summarize the application of multivariate optimization for the construction of electrochemical biosensors. The introduction provides an overview of electrochemical biosensing, which is classified into catalytic-based and affinity-based biosensors, and discusses the most recent published works in each category. We then explore the relevance of electrochemical biosensors for food safety analysis, taking into account analytes of different natures.
View Article and Find Full Text PDFA voltammetric electronic tongue (E-tongue) is "a multisensor system, which consists of a number of low-selective sensors and uses advanced mathematical procedures for signal processing based on pattern recognition and/or data multivariate analysis such as artificial neural networks (ANNs), principal component analysis (PCA), among others". Thus, E-tongues in combination with chemometrics tools result in more accurate and selective analytical methods. In this work, we report results of a simple and reliable electroanalytical method to determine butyl hydroxyanisole (BHA), butyl hydroxytoluene (BHT) and propyl gallate (PG) in edible olive oils (EOO).
View Article and Find Full Text PDFA GCE/CRGO-βCD's/ADA-SPE/AuNPs biosensor was successfully developed to determine eugenol in dental samples. The optimal conditions to construct the biosensor were obtained from an experimental design based on the response surfaces methodology. The GCE/CRGO-βCD/ADA-SPE/AuNPs biosensor exhibited a very good analytical performance for the quantification of eugenol.
View Article and Find Full Text PDFThe oxidation of eugenol, isoeugenol and vanillin natural antioxidants catalyzed by the soybean peroxidase enzyme was studied using uv-vis spectroscopy. An experimental design was used to optimize the different variables. The multivariate curve resolution method was used to obtain the profiles of antioxidant absorbance's as a function of time due to uv-vis absorption bands of both antioxidants and the enzymatic reaction product/s show a strong overlap.
View Article and Find Full Text PDFSterigmatocystin is a carcinogenic compound that affects several species of crops and several species of experimental animals. The sterigmatocystin biosynthetic pathway is the best known and most studied. The International Agency for Research on Cancer classifies sterigmatocystin in the Group 2B.
View Article and Find Full Text PDFAn amperometric biosensor based on horseradish peroxidase (EC1.11.1.
View Article and Find Full Text PDFThe development of an electrochemical immunosensor incorporated in a micro fluidic cell for quantification of citrinin (CIT) mycotoxin in rice samples is described for the first time. Both CIT present in rice samples and immobilized on a gold surface electrodeposited on a glassy carbon (GC) electrode modified with a cysteamine self-assembled monolayer were allowed to compete for the monoclonal mouse anti-CIT IgG antibody (mAb-CIT) present in solution. Then, an excess of rabbit anti mouse IgG (H+L) labelled with the horseradish peroxidase (secAb-HRP) was added, which reacts with the mAb-CIT which is in the immuno-complex formed with the immobilized CIT on the electrode surface.
View Article and Find Full Text PDFAn amperometric biosensor based on peroxidases from Brassica napus hairy roots (PBHR) used to determine the total polyphenolic content in wine and tea samples is proposed by the first time. The method employs carbon paste (CP) electrodes filled up with PBHR, ferrocene (Fc), and multi-walled carbon nanotubes embedded in a mineral oil (MWCNT+MO) at a given composition (PBHR-Fc-MWCNT+MO). The biosensor was covered externally with a dialysis membrane, which was fixed at the electrode body side part with a Teflon laboratory film and an O-ring.
View Article and Find Full Text PDF