Publications by authors named "Adrian Mann"

Osteoarthritis and rheumatoid arthritis are debilitating conditions, affecting millions of people. Both osteoarthritis and rheumatoid arthritis degrade the articular cartilage (AC) at the ends of long bones, resulting in weakened tissue prone to further damage. This degradation impairs the cartilage's mechanical properties leading to areas of thinned cartilage and exposed bone which compromises the integrity of the joint.

View Article and Find Full Text PDF

Coastal wetlands provide key ecosystem services, including substantial long-term storage of atmospheric CO in soil organic carbon pools. This accumulation of soil organic matter is a vital component of elevation gain in coastal wetlands responding to sea-level rise. Anthropogenic activities that alter coastal wetland function through disruption of tidal exchange and wetland water levels are ubiquitous.

View Article and Find Full Text PDF

Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH ) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance.

View Article and Find Full Text PDF

Pharmaceutical powder processing is notoriously subject to unpredictable jamming, sticking and charging disturbances. To unveil the material science underlying these effects, we use atomic force microscopy (AFM) on a common pharmaceutical, acetaminophen (APAP). Specifically, we study surface adhesion and morphology as a function of relative humidity (RH) for monoclinic acetaminophen, using both plain AFM tips and tips functionalized to be hydrophobic or hydrophilic.

View Article and Find Full Text PDF

In this study, we evaluate if high frequency ultrasound impedance measurements can predict the mechanical properties of bones where the amount of bone mineral is varied. The motivation stems from the potential utility of ultrasound as a noninvasive technique to evaluate and monitor the mechanical properties of bone during treatment of diseased states where the ratio of mineral content to organic matrix content could change (e.g.

View Article and Find Full Text PDF

Osteoporosis is a bone disease characterized by low bone mass and deterioration of the tissue leading to increased fragility. Osteopontin (OPN), a noncollageneous bone matrix protein, has been shown to play an important role in osteoporosis, bone resorption, and mineralization. However, OPN's role in bone mechanical properties on the submicron scale has not been studied in any detail.

View Article and Find Full Text PDF