The Asian tiger mosquito, , has spread widely throughout Italy since its introduction, with significant public health implications. We examine how decadal temperature trends and sub-monthly heatwave events affect its climate-driven geographical distribution and temporal dynamics using a new regional-scale dynamical model. The model is calibrated using [Formula: see text] years of ovitrap data for Emilia-Romagna and reproduces the vector seasonality and, to a lesser extent, its inter-annual variability.
View Article and Find Full Text PDFA new database of the Entomological Inoculation Rate (EIR) was used to directly link the risk of infectious mosquito bites to climate in Sub-Saharan Africa. Applying a statistical mixed model framework to high-quality monthly EIR measurements collected from field campaigns in Sub-Saharan Africa, we analyzed the impact of rainfall and temperature seasonality on EIR seasonality and determined important climate drivers of malaria seasonality across varied climate settings in the region. We observed that seasonal malaria transmission was within a temperature window of 15°C-40°C and was sustained if average temperature was well above 15°C or below 40°C.
View Article and Find Full Text PDFJ Adv Model Earth Syst
December 2021
We investigate how ocean feedbacks and the diurnal cycle impact convective aggregation using a slab ocean coupled to a cloud resolving model. With a 20 m mixed layer ocean, aggregation occurs after 25 days. Thinner ocean layers slow the onset of clustering, with a 1 m ocean layer needing around 43 days.
View Article and Find Full Text PDFBackground: Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient.
View Article and Find Full Text PDFStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies.
View Article and Find Full Text PDFMalaria forecasts from dynamical systems have never been attempted at the health district or local clinic catchment scale, and so their usefulness for public health preparedness and response at the local level is fundamentally unknown. A pilot preoperational forecasting system is introduced in which the European Centre for Medium Range Weather Forecasts ensemble prediction system and seasonal climate forecasts of temperature and rainfall are used to drive the uncalibrated dynamical malaria model VECTRI to predict anomalies in transmission intensity 4 months ahead. It is demonstrated that the system has statistically significant skill at a number of sentinel sites in Uganda with high-quality data.
View Article and Find Full Text PDFBackground: A major health burden in Cameroon is malaria, a disease that is sensitive to climate, environment and socio-economic conditions, but whose precise relationship with these drivers is still uncertain. An improved understanding of the relationship between the disease and its drivers, and the ability to represent these relationships in dynamic disease models, would allow such models to contribute to health mitigation and adaptation planning. This work collects surveys of malaria parasite ratio and entomological inoculation rate and examines their relationship with temperature, rainfall, population density in Cameroon and uses this analysis to evaluate a climate sensitive mathematical model of malaria transmission.
View Article and Find Full Text PDFIn this study, experiments are conducted to gauge the relative importance of model, initial condition, and driving climate uncertainty for simulations of malaria transmission at a highland plantation in Kericho, Kenya. A genetic algorithm calibrates each of these three factors within their assessed prior uncertainty in turn to see which allows the best fit to a timeseries of confirmed cases. It is shown that for high altitude locations close to the threshold for transmission, the spatial representativeness uncertainty for climate, in particular temperature, dominates the uncertainty due to model parameter settings.
View Article and Find Full Text PDFOne year of mobile phone location data from Senegal is analysed to determine the characteristics of journeys that result in an overnight stay, and are thus relevant for malaria transmission. Defining the home location of each person as the place of most frequent calls, it is found that approximately 60% of people who spend nights away from home have regular destinations that are repeatedly visited, although only 10% have 3 or more regular destinations. The number of journeys involving overnight stays peaks at a distance of 50 km, although roughly half of such journeys exceed 100 km.
View Article and Find Full Text PDFMalaria case statistics were analysed for the period 1926 to 1960 to identify inter-annual variations in malaria cases for the Uganda Protectorate. The analysis shows the mid-to-late 1930s to be a period of increased reported cases. After World War II, malaria cases trend down to a relative minimum in the early 1950s, before increasing rapidly after 1953 to the end of the decade.
View Article and Find Full Text PDFThe effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan.
View Article and Find Full Text PDFAn energy budget model is developed to predict water temperature of typical mosquito larval developmental habitats. It assumes a homogeneous mixed water column driven by empirically derived fluxes. The model shows good agreement at both hourly and daily time scales with 10-min temporal resolution observed water temperatures, monitored between June and November 2013 within a peri-urban area of Kumasi, Ghana.
View Article and Find Full Text PDFDaily observations of potential mosquito developmental habitats in a suburb of Kumasi in central Ghana reveal a strong variability in their water persistence times, which ranged between 11 and 81 days. The persistence of the ponds was strongly tied with rainfall, location and size of the puddles. A simple power-law relationship is found to fit the relationship between the average pond depth and area well.
View Article and Find Full Text PDFUsing mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa.
View Article and Find Full Text PDFWe investigate the short-term effects of air temperature, rainfall, and socioeconomic indicators on malaria incidence across Rwanda and Uganda from 2002 to 2011. Delayed and nonlinear effects of temperature and rainfall data are estimated using generalised additive mixed models with a distributed lag nonlinear specification. A time series cross-validation algorithm is implemented to select the best subset of socioeconomic predictors and to define the degree of smoothing of the weather variables.
View Article and Find Full Text PDFDynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage.
View Article and Find Full Text PDFA new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions.
View Article and Find Full Text PDFMalaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure.
View Article and Find Full Text PDFBackground: Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for the modelling of malaria risk in space and time.
View Article and Find Full Text PDFBackground: The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors.
Methods: A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology.