Publications by authors named "Adrian M Peter"

Early detection of firearm discharge has become increasingly critical for situational awareness in both civilian and military domains. The ability to determine the location and model of a discharged firearm is vital, as this can inform effective response plans. To this end, several gunshot audio datasets have been released that aim to facilitate gunshot detection and classification of a discharged firearm based on acoustic signatures.

View Article and Find Full Text PDF

We consider the problem of finding the closest multivariate Gaussian distribution on a constraint surface of all Gaussian distributions to a given distribution. Previous research regarding geodesics on the multivariate Gaussian manifold has focused on finding closed-form, shortest-path distances between two fixed distributions on the manifold, often restricting the parameters to obtain the desired solution. We demonstrate how to employ the techniques of the calculus of variations with a variable endpoint to search for the closest distribution from a family of distributions generated via a constraint set on the parameter manifold.

View Article and Find Full Text PDF

In this work, we present a novel, theoretical approach to address one of the longstanding problems in computer vision: 2D and 3D affine invariant feature matching. Our proposed Grassmannian Graph (GrassGraph) framework employs a two stage procedure that is capable of robustly recovering correspondences between two unorganized, affinely related feature (point) sets. In the ideal case, the first stage maps the feature sets to an affine invariant Grassmannian representation, where the features are mapped into the same subspace.

View Article and Find Full Text PDF

This paper proposes a novel image-retargeting algorithm that can retarget images to a large family of non-rectangular shapes. Specifically, we study image retargeting from a broader perspective that includes the content as well as the shape of an image, and the proposed content and shape-aware image-retargeting (CASAIR) algorithm is driven by the dual objectives of image content preservation and image domain transformation, with the latter defined by an application-specific target shape. The algorithm is based on the idea of seam segment carving that successively removes low-cost seam segments from the image to simultaneously achieve the two objectives, with the selection of seam segments determined by a cost function incorporating inputs from image content and target shape.

View Article and Find Full Text PDF

Shape matching plays a prominent role in the comparison of similar structures. We present a unifying framework for shape matching that uses mixture models to couple both the shape representation and deformation. The theoretical foundation is drawn from information geometry wherein information matrices are used to establish intrinsic distances between parametric densities.

View Article and Find Full Text PDF