Publications by authors named "Adrian L Dempwolff"

The derivation and implementation of analytical gradients for methods based on the non-Dyson algebraic diagrammatic construction for the electron propagator, IP-ADC and EA-ADC, up to the third order is presented. Using nuclear gradients, ground-state equilibrium structures for small open-shell systems are calculated. In addition, we investigated the performance of IP/EA-ADC methods for the calculation of adiabatic ionization potentials and electron affinities for medium-sized organic molecules.

View Article and Find Full Text PDF

We present a non-Dyson fourth-order algebraic diagrammatic construction formulation of the electron propagator, featuring the distinct IP- and EA-ADC(4) schemes for the treatment of ionization and electron attachment processes. The algebraic expressions have been derived automatically using the intermediate state representation approach and implemented in the Q-Chem quantum-chemical program package. The performance of the novel methods is assessed with respect to high-level reference data for ionization potentials and electron affinities of closed- and open-shell systems.

View Article and Find Full Text PDF

Algebraic diagrammatic construction (ADC) schemes represent a family of methods for the calculation of excited electronic states and electron-detached and -attached states. All ADC methods have been demonstrated to possess great potential for molecular applications, e.g.

View Article and Find Full Text PDF

Transient absorption UV pump X-ray probe spectroscopy has been established as a versatile technique for the exploration of ultrafast photoinduced dynamics in valence-excited states. In this work, an theoretical framework for the simulation of time-resolved UV pump X-ray probe spectra is presented. The method is based on the description of the radiation-matter interaction in the classical doorway-window approximation and a surface-hopping algorithm for the nonadiabatic nuclear excited-state dynamics.

View Article and Find Full Text PDF

Different approaches to mixed-order algebraic-diagrammatic construction (ADC) schemes are investigated. The performance of two different strategies for scaling third-order contributions to the ADC secular matrix is evaluated. Both considered schemes employ a single tuning parameter and conserve general properties inherent to all ADC methods, such as hermiticity and size-consistency.

View Article and Find Full Text PDF

This article describes a novel approach for the calculation of ionization potentials (IPs), or, more generally, electron-detachment energies, based on a unitary coupled-cluster (UCC) parameterization of the ground-state wave function. Explicit working equations for a scheme referred to as IP-UCC3 are given, providing electron-detachment energies and spectroscopic amplitudes of electron-detached states dominated by one-hole excitations correct through third order. In the derivation, an expansion of the UCC transformed Hamiltonian involving Bernoulli numbers as expansion coefficients is employed.

View Article and Find Full Text PDF

The performance of several methods for the calculation of vertical ionization potentials (IPs) or, more generally, electron-detachment energies based on unitary coupled-cluster (UCC) theory and the algebraic-diagrammatic construction (ADC) scheme is evaluated with respect to benchmark data computed at the level of equation-of-motion coupled-cluster theory, including single, double, and triple excitations (IP-EOM-CCSDT). Based on a statistical evaluation of about 200 electron-detached states of 41 molecules, the second-order methods IP-ADC(2) and IP-UCC2 show modest accuracies with IP-EOM-CCSDT as reference, exposing a mean signed error and a standard deviation of the error of -0.54 ± 0.

View Article and Find Full Text PDF

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods.

View Article and Find Full Text PDF

The second- and third-order algebraic-diagrammatic construction schemes for the electron propagator for studies of electron attachment processes [EA-ADC(2) and EA-ADC(3)] have been extended to include the complex absorbing potential (CAP) method for the treatment of electronic resonances. Theoretical and conceptual aspects of the new CAP/EA-ADC methodology are studied in detail at the example of the well-known Π resonance of the nitrogen anion N . The methodology is further applied to π* shape resonances, for which ethylene is considered as a prototype.

View Article and Find Full Text PDF

Computational schemes for comprehensive studies of molecular electron-attached states and the calculation of electron affinities (EAs) are formulated and implemented employing the intermediate state representation (ISR) formalism and the algebraic-diagrammatic construction approximation for the electron propagator (EA-ADC). These EA-ADC(n)/ISR(m) schemes allow for a consistent treatment of not only electron affinities and pole strengths up to third-order of perturbation theory (n = 3) but also one-electron properties of electron-attached states up to second order (m = 2). The EA-ADC/ISR equations were implemented in the Q-Chem program for Ŝ-adapted intermediate states, allowing also open-shell systems to be studied using unrestricted Hartree-Fock references.

View Article and Find Full Text PDF

Excited-state intramolecular hydrogen transfer (ESIHT) is a fundamental reaction relevant to chemistry and biology. Malonaldehyde is the simplest example of ESIHT, yet only little is known experimentally about its excited-state dynamics. Several competing relaxation pathways have been proposed, including internal conversion mediated by ESIHT and C[double bond, length as m-dash]C torsional motion as well as intersystem crossing.

View Article and Find Full Text PDF

The third-order non-Dyson algebraic-diagrammatic construction approach to the electron propagator [IP-ADC(3)] is extended using the intermediate state representation (ISR) formalism, allowing the wave functions and properties of molecular states with detached electron to be studied. The second-order ISR equations [ISR(2)] for the one-particle (transition) density matrix have been derived and implemented in the Q-CHEM program. The approach is completely general and enables evaluation of arbitrary one-particle operators and interpretation of electron detachment processes in terms of density-based quantities.

View Article and Find Full Text PDF

The third-order algebraic-diagrammatic construction method for studies of electron detachment processes within the electron propagator framework [IP-ADC(3)] was extended to treat the properties of molecular states with a detached electron using the intermediate state representation (ISR) formalism. The second-order ISR(2) equations for the one-particle (transition) density matrix have been derived and implemented as an extension of the IP-(U)ADC(3) method available in the Q-CHEM program. As a first systematic test of the present IP-(U)ADC(3)/ISR(2) method, the dipole moments of various electronic states of closed- and open-shell molecules have been computed and compared to full configuration interaction (FCI) results.

View Article and Find Full Text PDF

An ad hoc modification of the algebraic-diagrammatic construction (ADC) scheme for the polarization propagator is presented. Within this approach, all first-order Møller-Plesset correlation coefficients occurring in the second-order ADC secular matrix are replaced by amplitudes obtained from a coupled cluster doubles (CCD) calculation. This new hybrid method, denoted CCD-ADC(2), has been tested on a series of small diatomic and triatomic molecules and benchmarked with respect to Thiel's benchmark set of medium-sized organic molecules.

View Article and Find Full Text PDF

A novel efficient implementation of the non-Dyson algebraic diagrammatic construction (ADC) scheme of the (N - 1)-part of the electron propagator up to third order of perturbation theory is presented. Due to the underlying spin-orbital formulation, for the first time, the computation of ionization potentials of open-shell radicals is thus possible via non-Dyson ADC schemes. Thorough evaluation of the accuracy, applicability, and capabilities of the new method reveals a mean error of 0.

View Article and Find Full Text PDF

A full account of a recently discovered gold(I)-catalyzed reaction, a cycloaddition of carbonyl compounds to enynes yielding 2-oxabicyclo[3.1.0]hexanes with four stereogenic centers, is presented.

View Article and Find Full Text PDF