Melt electrowriting (MEW) is a high-resolution additive manufacturing technology capable of depositing micrometric fibers onto a moving collector to form 3D scaffolds of controlled mechanical properties. While the critical role of layer bonding to achieve mechanical integrity in fused deposition modeling has been widely reported, it remains largely unknown in MEW, in part due to a lack of methods to assess it. Here, a systematic framework is developed to unravel the significance of layer bonding in MEW scaffolds and its ultimate effect on their mechanical properties.
View Article and Find Full Text PDFDirect laser writing (DLW) of mesoporous porous silicon (PS) films is shown to selectively create spatially separated nitridized and carbonized features on a single film. Nitridized or carbonized features are formed during DLW at 405 nm in an ambient of nitrogen and propane gas, respectively. The range of laser fluence required to create varying feature sizes while avoiding damage to the PS film is identified.
View Article and Find Full Text PDFWhile wireless IOT modules can be made extremely compact, antennas typically protrude from the module, providing the potential to catch near moving/rotating equipment or transfer loads to the PCB through end forces, which can lead to failures. This work explores the use of split-ring resonator (SRR) designs to achieve a planar antenna with a maximum dimension less than a monopole working at the same frequency. The very narrow bandwidth of the SRR required detailed physical models to create printed circuit board (PCB)-based antenna designs that could be used at LoRa frequencies of 433 MHz and 915 MHz.
View Article and Find Full Text PDFThe most common readout technique used in atomic force microscopy (AFM) is based on optical beam deflection (OBD), which relies on monitoring deflection of the cantilever probe by measuring the position of the laser beam reflected from the free end of the AFM cantilever. Although systems using the OBD readout can achieve subnanometre displacement resolution and video rate imaging speeds, its main limitation is size, which is difficult to minimise, thus limiting multiprobe imaging capability. Currently, system miniaturisation has been accommodated by adopting on-chip electrical readout solutions, often at the expense of measurement sensitivity.
View Article and Find Full Text PDFThe acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing.
View Article and Find Full Text PDFMonitoring the nanomechanical movement of suspended cantilever structures has found use in applications ranging from biological/chemical sensing to atomic force microscopy. Interrogating these sensors relies on the ability to accurately determine the sub-nanometre movements of the cantilever. Here we investigate a technique based on the combination of integrated silicon photonics and microelectromechanical systems (MEMS) to create an optically resonant microcavity and demonstrate its use for monitoring of the position of cantilevers on the picometer scale under ambient conditions with dynamic range extending over several microns.
View Article and Find Full Text PDFNanoscale Res Lett
September 2014
Unlabelled: Suspended micromachined porous silicon beams with laterally uniform porosity are reported, which have been fabricated using standard photolithography processes designed for compatibility with complementary metal-oxide-semiconductor (CMOS) processes. Anodization, annealing, reactive ion etching, repeated photolithography, lift off and electropolishing processes were used to release patterned porous silicon microbeams on a Si substrate. This is the first time that micromachined, suspended PS microbeams have been demonstrated with laterally uniform porosity, well-defined anchors and flat surfaces.
View Article and Find Full Text PDFTransmission diffraction gratings operating at 1,565 nm based on multilayer porous silicon films are modeled, fabricated, and tested. Features down to 2 μm have been patterned into submicron-thick mesoporous films using standard photolithographic and dry etching techniques. After patterning of the top porous film, a second anodization can be performed, allowing an under-layer of highly uniform porosity and thickness to be achieved.
View Article and Find Full Text PDFSilica thin films containing uniformly dispersed lanthanum hexaboride (LaB₆) nanoparticles have been prepared by spin-coating a sol-gel silica solution containing cetyltrimethyl ammonium bromide (CTAB)-stabilized LaB₆ nanoparticles onto a glass substrate followed by a standard heat treatment. The production of this thin film involved three steps: (i) a CTAB-stabilized LaB₆ nanoparticle dispersion was prepared in water and then dried, (ii) the dried nanoparticles were redispersed in a small amount of water and mixed with tetraethoxyorthosilane (TEOS), ethanol, and a little acid to initiate the sol-gel reaction, and (iii) this reaction mixture was spun to produce a thin film and then was annealed. A range of techniques such as zeta potential, laser sizing, energy-filtered transmission electron microscopy (EFTEM), scanning TEM (STEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrum (EDS) were employed to characterize the particle's size, elemental composition, and stability and the optical properties of silica thin films with LaB₆ nanoparticles.
View Article and Find Full Text PDF