The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier.
View Article and Find Full Text PDFMicrocrystalline cellulose (Avicel) was subjected to three different pretreatments (acid, alkaline, and organosolv) before exposure to a mixture of cellulases (Celluclast). Addition of beta-glucosidase, to avoid the well-known inhibition of cellulase by cellobiose, markedly accelerated cellulose hydrolysis up to a ratio of activity units (beta-glucosidase/cellulase) of 20. All pretreatment protocols of Avicel were found to slightly increase its degree of crystallinity in comparison with the untreated control.
View Article and Find Full Text PDFHistidine ammonia lyase (HAL) catalyzes the elimination of ammonia from the substrate to form (E)-urocanate. The interaction between HAL and acrylic acids or alanines substituted with heteroaryl groups in the beta-position was investigated. These proved to be strong competitive inhibitors when the heteroaryl groups were furanyl, thiophenyl, benzofuranyl, and benzothiophenyl, carrying the alanyl or acrylic side chains either in 2 or 3 positions, with K(i) values between 18 and 139 microM.
View Article and Find Full Text PDFAcrylic acids and alanines substituted with heteroaryl groups at the beta-position were synthesized and spectroscopically characterized (UV, HRMS, (1)H NMR, and (13)C NMR spectroscopy). The heteroaryl groups were furanyl, thiophenyl, benzofuranyl, and benzothiophenyl and contained the alanyl side chains either at the 2- or 3-positions. While the former are good substrates for phenylalanine ammonia-lyase (PAL), the latter compounds are inhibitors.
View Article and Find Full Text PDF