Publications by authors named "Adrian K West"

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterised by the degeneration of motor neurons innervating skeletal muscle. The mechanisms underlying neurodegeneration in ALS are not yet fully elucidated, and with current therapeutics only able to extend lifespan by a matter of months there is a clear need for novel therapies to increase lifespan and patient quality of life. Here, we evaluated whether moderate-intensity treadmill exercise and/or treatment with metallothionein-2 (MT2), a neuroprotective protein, could improve survival, behavioural or neuropathological outcomes in SOD1 familial ALS mice.

View Article and Find Full Text PDF

Aurora kinase B (AurkB) is a serine/threonine protein kinase with a well-characterised role in orchestrating cell division and cytokinesis, and is prominently expressed in healthy proliferating and cancerous cells. However, the role of AurkB in differentiated and non-dividing cells has not been extensively explored. Previously, we have described a significant upregulation of AurkB expression in cultured cortical neurons following an experimental axonal transection.

View Article and Find Full Text PDF

The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential.

View Article and Find Full Text PDF

Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the motor system. Although the etiology of the disease is not fully understood, microglial activation and neuroinflammation are thought to play a role in disease progression.

Methods: We examined the immunohistochemical expression of two markers of microglial phenotype, the arginine-metabolizing enzymes inducible nitric oxide synthase (iNOS) and arginase1 (Arg1), in the spinal cord of a mouse model carrying an ALS-linked mutant human superoxide dismutase transgene (SOD1(G93A)) and in non-transgenic wild-type (WT) mice.

View Article and Find Full Text PDF

We examined the impact of intracellular dialysis on fluorescence detection of neuronal intracellular Zn(2+) accumulation. Comparison between two dialysis conditions (standard; 20 min, brief; 2 min) by standard whole-cell clamp revealed a high vulnerability of intracellular Zn(2+) buffers to intracellular dialysis. Thus, low concentrations of zinc-pyrithione generated robust responses in neurons with standard dialysis, but signals were smaller in neurons with short dialysis.

View Article and Find Full Text PDF

Metallothionein-I/II (MT-I/II) is a small metal-binding protein with antioxidant and neuroprotective properties, which has been used experimentally as a neurotherapeutic agent in multiple conditions. Therefore it is important to determine whether exogenous MT-I/II is retained in specific organs or expelled from the body following intramuscular and intraperitoneal injection. The distribution of exogenous MT-IIA (the major human MT-I/II isoform) was examined in MT-I/II-deficient mice, by immunohistochemistry of tissue samples and western blotting of urine samples.

View Article and Find Full Text PDF

Background: The beta-amyloid (Aβ) peptide comprises the amyloid plaques that characterise Alzheimer's disease (AD), and is thought to significantly contribute towards disease pathogenesis. Oxidative stress is elevated in the AD brain, and there is substantial evidence that the interaction between Aβ and redox-active copper is a major contributing factor towards oxidative stress in AD.

Results: The major findings of this study are that redox-active Cu(II)-Aβ causes pronounced axonal pathology in long-term neuronal cultures, including axonal fragmentation and the formation of hyperphosphorylated tau-immunoreactive axonal swellings.

View Article and Find Full Text PDF

Background: The primary olfactory pathway is a potential route through which microorganisms from the periphery could potentially access the central nervous system. Our previous studies demonstrated that if the olfactory epithelium was damaged, bacteria administered into the nasal cavity induced nitric oxide production in olfactory ensheathing cells. This study investigates the cytokine profile of olfactory tissues as a consequence of bacterial challenge and establishes whether or not the bacteria are able to reach the olfactory bulb in the central nervous system.

View Article and Find Full Text PDF

Burn injury can lead to abnormal sensory function at both the injury and at distant uninjured sites. Here, we used a mouse model to investigate return of nociceptive function and reinnervation of the skin at the wound and uninjured distant sites following a 3% total burn surface area full-thickness burn injury. We have previously shown that topical application of zinc-metallothionein-IIA (Zn(7) -MT-IIA) accelerates healing following burn injury, and here, we investigated the potential of Zn(7) -MT-IIA to enhance reinnervation and sensory recovery.

View Article and Find Full Text PDF

Unlabelled: Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself.

View Article and Find Full Text PDF

Background: Metallothionein-I and -II (MT-I/II) is produced by reactive astrocytes in the injured brain and has been shown to have neuroprotective effects. The neuroprotective effects of MT-I/II can be replicated in vitro which suggests that MT-I/II may act directly on injured neurons. However, MT-I/II is also known to modulate the immune system and inflammatory processes mediated by the immune system can exacerbate brain injury.

View Article and Find Full Text PDF

There are currently few clinical strategies in place, which provide effective neuroprotection and repair, despite an intense international effort over the past decades. One possible explanation for this is that a deeper understanding is required of how endogenous mechanisms act to confer neuroprotection. This mini-review reports the proceedings of a recent workshop "Neuroprotection and Neurorepair: New Strategies" (Iguazu Falls, Misiones, Argentina, April 11-13, 2011, Satellite Symposium of the V Neurotoxicity Society Meeting, 2011) in which four areas of active research were identified to have the potential to generate new insights into this field.

View Article and Find Full Text PDF

Prior studies have reported that metallothionein I/II (MT) promote regenerative axonal sprouting and neurite elongation of a variety of central nervous system neurons after injury. In this study, we evaluated whether MT is capable of modulating regenerative axon outgrowth of neurons from the peripheral nervous system. The effect of MT was firstly investigated in dorsal root ganglion (DRG) explants, where axons were scratch-injured in the presence or absence of exogenous MT.

View Article and Find Full Text PDF

Metallothionein has a well-documented protective and proregenerative effect in the mammalian brain, particularly following physical trauma and ischemia or during the onset of neurodegenerative disease. A range of mechanisms have been established for this, including metallothionein's metal binding properties and its ability to scavenge free radicals. In recent years it has become apparent that metallothionein is present in the extracellular compartment of the central nervous system and that it can interact with cell surface receptors of the lipoprotein-receptor-related protein family, including lipoprotein-receptor-related protein 1 (LRP1) and megalin.

View Article and Find Full Text PDF

Axotomized neurons have the innate ability to undergo regenerative sprouting but this is often impeded by the inhibitory central nervous system environment. To gain mechanistic insights into the key molecular determinates that specifically underlie neuronal regeneration at a transcriptomic level, we have undertaken a DNA microarray study on mature cortical neuronal clusters maintained in vitro at 8, 15, 24 and 48 hrs following complete axonal severance. A total of 305 genes, each with a minimum fold change of ± 1.

View Article and Find Full Text PDF

Background: One of the key pathological features of AD is the formation of insoluble amyloid plaques. The major constituent of these extracellular plaques is the beta-amyloid peptide (Aβ), although Aβ is also found to accumulate intraneuronally in AD. Due to the slowly progressive nature of the disease, it is likely that neurons are exposed to sublethal concentrations of both intracellular and extracellular Aβ for extended periods of time.

View Article and Find Full Text PDF

Nuclear factor kappaB (NFκB) is a key transcriptional regulator of inflammatory genes. We investigated the modulatory effects of olfactory ensheathing cells (OECs), microglia and meningeal fibroblasts on translocation of NFκB to astrocyte nuclei. The percentage of activated astrocytes in co-cultures with OECs was significantly less than for co-cultures with microglia (p<0.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) have been investigated extensively as a therapy to promote repair in the injured CNS, with variable efficacy in numerous studies over the previous decade. In many studies that report anatomical and functional recovery, the beneficial effects have been attributed to the ability of OECs to cross the PNS-CNS boundary, their production of growth factors, cell adhesion molecules and extracellular matrix proteins that promote and guide axon growth, and their ability to remyelinate axons. In this brief review, we focus on the interaction between OECs and astrocytes in vivo and in vitro, in the context of how OECs may be overcoming the deleterious effects of the glial scar.

View Article and Find Full Text PDF

Background: A major pathological hallmark of AD is the deposition of insoluble extracellular beta-amyloid (Abeta) plaques. There are compelling data suggesting that Abeta aggregation is catalysed by reaction with the metals zinc and copper.

Methodology/principal Findings: We now report that the major human-expressed metallothionein (MT) subtype, MT-2A, is capable of preventing the in vitro copper-mediated aggregation of Abeta1-40 and Abeta1-42.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterised by the formation of insoluble amyloidogenic plaques and neurofibrillary tangles. Beta amyloid (Abeta) peptide is one of the main constituents in Abeta plaques, and is thought to be a primary causative agent in AD. Neurons are likely to be exposed to chronic, sublethal doses of Abeta over an extended time during the pathogenesis of AD, however most studies published to date using in vitro models have focussed on acute studies.

View Article and Find Full Text PDF

Neuronal growth-inhibitory factor, later renamed metallothionein-3, is one of four members of the mammalian metallothionein family. Metallothioneins are a family of ubiquitous, low-molecular-weight, cysteine-rich proteins. Although neuronal growth-inhibitory factor shares metal-binding and reactive oxygen species scavenging properties with the other metallothioneins, it displays several distinct biological properties.

View Article and Find Full Text PDF

Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.

View Article and Find Full Text PDF

Olfactory nerves extend from the nasal cavity to the central nervous system and provide therefore, a direct route for pathogenic infection of the brain. Since actual infection by this route remains relatively uncommon, powerful endogenous mechanisms for preventing microbial infection must exist, but these remain poorly understood. Our previous studies unexpectedly revealed that the unique glial cells that ensheath olfactory nerves, olfactory ensheathing cells (OECs), expressed components of the innate immune response.

View Article and Find Full Text PDF

Severe injury to the epidermal barrier often results in scarring and life-long functional deficits, the outcome worsening with a number of factors including time taken to heal. We have investigated the potential of exogenous metallothionein IIA (Zn(7)-MT-IIA), a naturally occurring small cysteine-rich protein, to accelerate healing of burn wounds in a mouse model. Endogenous MT-I/II expression increased in basal keratinocytes concurrent with reepithelialization after a burn injury, indicating a role for MT-I/II in wound healing.

View Article and Find Full Text PDF