Publications by authors named "Adrian Hugenmatter"

We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH.

View Article and Find Full Text PDF

Serum paraoxonases (PONs) are detoxifying lactonases that were first identified in mammals. Three mammalian families are known, PON1, 2, and 3 that reside primarily in the liver. They catalyze essentially the same reaction, lactone hydrolysis, but differ in their substrate specificity.

View Article and Find Full Text PDF

Serum paraoxonases (PONs) are calcium-dependent lactonases with anti-atherogenic and detoxification functions. Here we describe the directed evolution and characterization of recombinant variants of serum paraoxonase PON3 that express in an active and soluble manner in Escherichia coli. These variants were obtained by combining family shuffling and phylogeny-based mutagenesis: the limited diversity of accessible, cloned PON3 genes was complemented by spiking the shuffling reaction with ancestor/consensus mutations, mutations to residues that comprise the consensus or appear in the predicted ancestors of the PON family.

View Article and Find Full Text PDF