Weyl semimetals are a novel class of topological materials with unique electronic structures and distinct properties. HfRhGe stands out as a noncentrosymmetric Weyl semimetal with unconventional superconducting characteristics. Using muon-spin rotation and relaxation (µSR) spectroscopy and thermodynamic measurements, a fully gapped superconducting state is identified in HfRhGe that breaks time-reversal symmetry at the superconducting transition.
View Article and Find Full Text PDFInnovation (Camb)
September 2023
The search of quantum spin liquid (QSL), an exotic magnetic state with strongly fluctuating and highly entangled spins down to zero temperature, is a main theme in current condensed matter physics. However, there is no smoking gun evidence for deconfined spinons in any QSL candidate so far. The disorders and competing exchange interactions may prevent the formation of an ideal QSL state on frustrated spin lattices.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2020
Superconductivity and magnetism are adversarial states of matter. The presence of spontaneous magnetic fields inside the superconducting state is, therefore, an intriguing phenomenon prompting extensive experimental and theoretical research. In this review, we discuss recent experimental discoveries of unconventional superconductors which spontaneously break time-reversal symmetry and theoretical efforts in understanding their properties.
View Article and Find Full Text PDFThere are several techniques providing quantitative elemental analysis, but very few capable of identifying both the concentration and chemical state of elements. This study presents a systematic investigation of the properties of the X-rays emitted after the atomic capture of negatively charged muons. The probability rates of the muonic transitions possess sensitivity to the electronic structure of materials, thus making the muonic X-ray Emission Spectroscopy complementary to the X-ray Absorption and Emission techniques for the study of the chemistry of elements, and able of unparalleled analysis in case of elements bearing low atomic numbers.
View Article and Find Full Text PDFConventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high-temperature superconductors, but their identification remains experimentally controversial.
View Article and Find Full Text PDF