The Circumsporozoite Protein (CSP) of Plasmodium falciparum contains an N-terminal region, a conserved Region I (RI), a junctional region, 25-42 copies of major (NPNA) and minor repeats followed by a C-terminal domain. The recently approved malaria vaccine, RTS,S/AS01 contains NPNAx19 and the C-terminal region of CSP. The efficacy of RTS,S against natural infection is low and short-lived, and mapping epitopes of inhibitory monoclonal antibodies may allow for rational improvement of CSP vaccines.
View Article and Find Full Text PDFPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA) repeat region.
View Article and Find Full Text PDFvaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed.
View Article and Find Full Text PDFObjectives: Poor oral health can have a negative impact on overall health. This is especially concerning for individuals with sickle cell disease (SCD), an inherited blood disorder that affects hemoglobin and can lead to an increased risk of infection and hyperalgesia. Because the majority of individuals with SCD have Medicaid insurance and no dental coverage, we provided free basic dental care to individuals with SCD to determine whether it decreased overall healthcare utilization.
View Article and Find Full Text PDFMalaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P.
View Article and Find Full Text PDFVaccines directed against the blood stages of Plasmodium falciparum malaria are intended to prevent the parasite from invading and replicating within host cells. No blood-stage malaria vaccine has shown clinical efficacy in humans. Most malaria vaccine antigens are parasite surface proteins that have evolved extensive genetic diversity, and this diversity could allow malaria parasites to escape vaccine-induced immunity.
View Article and Find Full Text PDFA Plasmodium falciparum 3D7 strain Apical Membrane Antigen-1 (AMA1) vaccine, formulated with AS02(A) adjuvant, slowed parasite growth in a recent Phase 1/2a trial, however sterile protection was not observed. We tested this AS02(A), and a Montanide ISA720 (ISA) formulation of 3D7 AMA1 in Aotus monkeys. The 3D7 parasite does not invade Aotus erythrocytes, hence two heterologous strains, FCH/4 and FVO, were used for challenge, FCH/4 AMA1 being more homologous to 3D7 than FVO AMA1.
View Article and Find Full Text PDFAntibodies against apical membrane antigen 1 (AMA1) inhibit invasion of Plasmodium merozoites into red cells, and a large number of single nucleotide polymorphisms on AMA1 allow the parasite to escape inhibitory antibodies. The availability of a crystal structure makes it possible to test protein engineering strategies to develop a monovalent broadly reactive vaccine. Previously, we showed that a linear stretch of polymorphic residues (amino acids 187 to 207), localized within the C1 cluster on domain 1, conferred the highest level of escape from inhibitory antibodies, and these were termed antigenic escape residues (AER).
View Article and Find Full Text PDFApical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P.
View Article and Find Full Text PDFIdentifying functionally critical regions of the malaria antigen AMA1 (apical membrane antigen 1) is necessary to understand the significance of the polymorphisms within this antigen for vaccine development. The crystal structure of AMA1 in complex with the Fab fragment of inhibitory monoclonal antibody 1F9 reveals that 1F9 binds to the AMA1 solvent-exposed hydrophobic trough, confirming its importance. 1F9 uses the heavy and light chain complementarity-determining regions (CDRs) to wrap around the polymorphic loops adjacent to the trough, but uses a ridge of framework residues to bind to the hydrophobic trough.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2007
Antibodies against the malaria vaccine candidate apical membrane antigen-1 (AMA-1) can inhibit invasion of merozoites into RBC, but antigenic diversity can compromise vaccine efficacy. We hypothesize that polymorphic sites located within inhibitory epitopes function as antigenic escape residues (AER). By using an in vitro model of antigenic escape, the inhibitory contribution of 24 polymorphic sites of the 3D7 AMA-1 vaccine was determined.
View Article and Find Full Text PDFAntibodies that inhibit red blood cell invasion by the Plasmodium merozoite block the erythrocytic cycle responsible for clinical malaria. The invasion-inhibitory monoclonal antibody (mAb) 4G2 recognizes a conserved epitope in the ectodomain of the essential Plasmodium falciparum microneme protein and vaccine candidate, apical membrane antigen 1 (PfAMA1). Here we demonstrate that purified Fab fragments of 4G2 inhibit invasion markedly more efficiently than the intact mAb, suggesting that the invasion-inhibitory activity of this mAb is not due solely to steric effects and that the epitope lies within a functionally critical region of the molecule.
View Article and Find Full Text PDFDuring malaria parasite invasion of red blood cells, merozoite proteins bind receptors on the surface of the erythrocyte. Two candidate Plasmodium yoelii adhesion proteins are apical membrane antigen 1 (AMA1) and the 235-kDa rhoptry proteins (P235). Previously, we have demonstrated that passive immunization with monoclonal antibodies (MAbs) 45B1 and 25.
View Article and Find Full Text PDFApical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate that possesses polymorphisms that may pose a problem for a vaccine based on this antigen. Knowledge of the distribution of the polymorphic sites on the surface of AMA1 is necessary to obtain a detailed understanding of their significance for vaccine development. For this reason we have sought to determine the three-dimensional structure of AMA1 using x-ray crystallography.
View Article and Find Full Text PDFExtracellular domains of malaria antigens almost invariably contain disulphide linkages but lack N- and O-linked glycosylation. The best practical approach to generating recombinant extracellular Plasmodium proteins is not established and the problems encountered when using a bacterial expression/refolding approach are discussed in detail. Limited proteolysis experiments were used to identify a relatively non-flexible core region of the Plasmodium falciparum protein apical membrane antigen 1 (AMA1), and refolding/purification was used to generate two fragments of AMA1.
View Article and Find Full Text PDF