Herein, we report a concise and efficient formal synthesis of (+)-hannokinol. Key to this new strategy is the use of a chiral Horner-Wittig reagent, readily available from 2-deoxy-D-ribose, to introduce the chiral 1,3-diol motif.
View Article and Find Full Text PDFOne of the most useful transformations in the synthetic chemist arsenal is the oxidation of alcohols to their corresponding carbonyl congeners. Despite its seemingly straightforward nature, this transformative reaction predominantly relies on the use of metals or hazardous reagents, making these processes highly unsustainable. To address this challenge, we have developed a sustainable metal-free method for the oxidation of alcohols in continuous flow.
View Article and Find Full Text PDFA two-step protocol for the modular synthesis of β- and α-quaternary β-amino acid derivatives is reported. The key steps are a photocatalytic hydroalkylation reaction, followed by an oxidative functionalisation to access -protected β-amino acids, esters, and amides. This strategy can be effectively scaled up continuous-flow technology.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2023
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
View Article and Find Full Text PDFHerein, we report a highly modular strategy to access spirocyclic scaffolds from abundant starting materials, i.e., cyclic ketones and α-amino or oxamic acids.
View Article and Find Full Text PDFIn the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships.
View Article and Find Full Text PDFHerein we present a highly efficient, light-mediated, deoxygenative protocol to access γ-oxo-α-amino acid derivatives. This radical methodology employs photoredox catalysis, in combination with triphenylphosphine, to generate acyl radicals from readily available (hetero)aromatic and vinylic carboxylic acids. This approach allows for the straightforward synthesis of γ-oxo-α-amino acids bearing a wide range of functional groups (e.
View Article and Find Full Text PDFAmino acids (AAs) are key structural motifs with widespread applications in organic synthesis, biochemistry, and material sciences. Recently, with the development of milder and more versatile radical-based procedures, the use of strategies relying on radical chemistry for the synthesis and modification of AAs has gained increased attention, as they allow rapid access to libraries of novel unnatural AAs containing a wide range of structural motifs. In this Minireview, we provide a broad overview of the advancements made in this field during the last decade, focusing on methods for the de novo synthesis of α-, β-, and γ-AAs, as well as for the selective derivatisation of canonical and non-canonical α-AAs.
View Article and Find Full Text PDFThe synthesis of tertiary alkyl fluorides through a formal radical deoxyfluorination process is described herein. This light-mediated, catalyst-free methodology is fast and broadly applicable allowing for the preparation of C-F bonds from (hetero)benzylic, propargylic, and non-activated tertiary alcohol derivatives. Preliminary mechanistic studies support that the key step of the reaction is the single-electron oxidation of cesium oxalates-which are readily available from the corresponding tertiary alcohols-with in situ generated TEDA (TEDA: N-(chloromethyl)triethylenediamine), a radical cation derived from Selectfluor®.
View Article and Find Full Text PDFSulfur-containing molecules participate in many essential biological processes. Of utmost importance is the methylthioether moiety, present in the proteinogenic amino acid methionine and installed in tRNA by radical-S-adenosylmethionine methylthiotransferases. Although the thiol-ene reaction for carbon-sulfur bond formation has found widespread applications in materials or medicinal science, a biocompatible chemo- and regioselective hydrothiolation of unactivated alkenes and alkynes remains elusive.
View Article and Find Full Text PDFCorrection for 'Quantifying and understanding the steric properties of N-heterocyclic carbenes' by Adrián Gómez-Suárez et al., Chem. Commun.
View Article and Find Full Text PDFChem Commun (Camb)
February 2017
This Feature Article presents and discusses the use of different methods to quantify and explore the steric impact of N-heterocyclic carbene (NHC) ligands. These include (a) the percent buried volume (%V), which provides a convenient single number to measure steric impact and (b) steric maps, which provide a graphical representation of the steric profile of a ligand using colour-coded contour maps. A critical discussion of the scope and limitations of these tools is presented, along with some examples of their use in organometallic chemistry and catalysis.
View Article and Find Full Text PDFThree new visible-light-promoted functionalizations of benzotriazole substrates were discovered using a mechanism-based screening method. ortho-Thiolated, borylated, and alkylated N-arylbenzamide products were obtained under mild reaction conditions in a new denitrogenative synthetic approach to functionalized aniline derivatives. The functional group tolerance of the borylation reaction was further analyzed in the first application of an additive-based robustness screen in a photocatalytic transformation.
View Article and Find Full Text PDFDinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation.
View Article and Find Full Text PDFHerein, we report a conceptually novel mechanism-based screening approach to accelerate discovery in photocatalysis. In contrast to most screening methods, which consider reactions as discrete entities, this approach instead focuses on a single constituent mechanistic step of a catalytic reaction. Using luminescence spectroscopy to investigate the key quenching step in photocatalytic reactions, an initial screen of 100 compounds led to the discovery of two promising substrate classes.
View Article and Find Full Text PDFDue to the synthetic advantages presented by the dual-gold-catalysed hydrophenoxylation of alkynes, a thorough study of this reaction was carried out in order to fully define the scope and limitations of the methodology. The protocol tolerates a wide range of functional groups, such as nitriles, ketones, esters, aldehydes, ketals, naphthyls, allyls or polyphenols, in a milder and more efficient manner than the previously reported methodologies. We have also identified that while we are able to use highly steric hindered phenols, small changes on the steric bulk of the alkynes have a dramatic effect on the reactivity.
View Article and Find Full Text PDFDescribed herein is a new and straightforward decarboxylative di- and trifluoromethylthiolation of alkyl carboxylic acids promoted by visible light. This approach enables the synthesis of biologically relevant alkyl SCF2H and SCF3 compounds from cheap and abundant carboxylic acids. The method is operationally simple, using irradiation from household light sources, and its mild reaction conditions make it tolerant of a range of functional groups.
View Article and Find Full Text PDFHerein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2 (μ-OH)][BF4 ] is essential to enter the catalytic cycle, and this step is favoured by the presence of bulky, non-coordinating counter ions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but also as a co-catalyst, lowering the energy barriers of several transition states.
View Article and Find Full Text PDFThe electronic nature of the interaction of NHCs with metal centres is of interest when exploring their properties, how these properties influence those of metal complexes, and how these properties might depend on ligand structure. Selenourea and phosphinidene complexes have been proposed to allow the measurement of the π-accepting ability of NHCs, independent of their σ-donating ability, the collection of Se or P NMR spectra, respectively. Herein, the synthesis and characterisation of selenoureas derived from a range of imidazol-2-ylidenes, 4,5-dihydroimidazol-2-ylidenes and triazol-2-ylidenes are documented.
View Article and Find Full Text PDFA new synthetic strategy was devised leading to the formation of complexes, such as [Au(IPr)(CH2 COCH3)]. The approach capitalizes on the formation of a decomposition product observed in the course of the synthesis of [Au(IPr)(Cl)]. A library of gold acetonyl complexes containing the most common N-heterocyclic carbene (NHC) ligands has been synthesized.
View Article and Find Full Text PDFA new synthetic protocol that combines the advantages offered by eco-friendly solvent-free reactions and sequential transformations is reported. This strategy offers straightforward access to benzo[c]chromenes and benzo[b]furans from commercially available starting materials. This two-step, one-pot strategy consists of an Au-catalyzed hydrophenoxylation process followed by Pd-catalyzed C-H activation or Mizoroki-Heck reactions.
View Article and Find Full Text PDFThe ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active.
View Article and Find Full Text PDFA flexible, efficient and straightforward methodology for the synthesis of N-heterocyclic carbene gold(I)-amide complexes is reported. Reaction of the versatile building block [Au(OH)(IPr)] (1) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with a series of commercially available (hetero)aromatic amines leads to the synthesis of several [Au(NRR')(IPr)] complexes in good yields and with water as the sole byproduct. Interestingly, these complexes present luminescence properties.
View Article and Find Full Text PDFThe synthesis of a new class of organogold species containing a peroxo moiety is reported. Complexes [Au(IPr)(OO(t)Bu)] and [Au(SIPr)(OO(t)Bu)] have been synthesised via a straightforward methodology using the parent gold(I) hydroxide complexes as synthons. These complexes have been successfully used in oxygen-transfer reactions to triphenylphosphine.
View Article and Find Full Text PDF