The complex electron-phonon interaction occurring in bulk lead halide perovskites gives rise to anomalous temperature dependences, like the widening of the electronic band gap as temperature increases. However, possible confinement effects on the electron-phonon coupling in the nanocrystalline version of these materials remain unexplored. Herein, we study the temperature (ranging from 80 K to ambient) and hydrostatic pressure (from atmospheric to 0.
View Article and Find Full Text PDFLead halide perovskites, which are causing a paradigm shift in photovoltaics, exhibit an atypical temperature dependence of the fundamental gap: it decreases in energy with decreasing temperature. Reports ascribe such a behavior to a strong electron-phonon renormalization of the gap, neglecting contributions from thermal expansion. However, high-pressure experiments performed on the archetypal perovskite MAPbI (MA stands for methylammonium) yield a negative pressure coefficient for the gap of the tetragonal room-temperature phase, which speaks against the assumption of negligible thermal expansion effects.
View Article and Find Full Text PDF