Publications by authors named "Adrian Fernandez-Lodeiro"

Article Synopsis
  • - The study introduces a method for creating silver nanoplates (AgNPTs) with customizable sizes and thicknesses, utilizing ethylenediaminetetraacetic acid (EDTA) and small silver seeds to control their optical properties.
  • - By adjusting the pH between 8-10.5 during the synthesis process, researchers can influence the growth of the nanoplates, producing different optical responses and extending plasmon resonance up to around 2000 nm.
  • - The addition of Adenosine 5' monophosphate (AMP) enhances nanoplate stability and allows for independent thickness adjustments while EDTA aids in the complexation of silver, leading to precise control over nanoplate characteristics through theoretical simulations
View Article and Find Full Text PDF

Bimetallic nanomaterials have generated significant interest across diverse scientific disciplines, due to their unique and tunable properties arising from the synergistic combination of two distinct metallic elements. This study presents a novel approach for synthesizing branched gold-platinum nanoparticles by utilizing poly(allylamine hydrochloride) (PAH)-stabilized branched gold nanoparticles, with a localized surface plasmon resonance (LSPR) response of around 1000 nm, as a template for platinum deposition. This approach allows precise control over nanoparticle size, the LSPR band, and the branching degree at an ambient temperature, without the need for high temperatures or organic solvents.

View Article and Find Full Text PDF

The global increase in multidrug-resistant bacteria poses a challenge to public health and requires the development of new antibacterial materials. In this study, we examined the bactericidal properties of mesoporous silica-coated silver nanoparticles, varying the core sizes (ca. 28 nm and 51 nm).

View Article and Find Full Text PDF

In this study, we propose a novel approach for the silica coating of silver nanoparticles based on surface modification with adenosine monophosphate (AMP). Upon AMP stabilization, the nanoparticles can be transferred into 2-propanol, promoting the growth of silica on the particle surfaces through the standard Stöber process. The obtained silica shells are uniform and homogeneous, and the method allows a high degree of control over shell thickness while minimizing the presence of uncoated NPs or the negligible presence of core-free silica NPs.

View Article and Find Full Text PDF

This work investigates the potential utilization of Cu(i) as a reducing agent for the transformation of the platinum salt KPtCl, resulting in the production of stable nanoparticles. The synthesized nanoparticles exhibit a bimetallic composition, incorporating copper within their final structure. This approach offers a convenient and accessible methodology for the production of bimetallic nanostructures.

View Article and Find Full Text PDF

Bimetallic nanostructures composed of gold (Au) and palladium (Pd) have garnered increased interest for their applications in heterogeneous catalysis. This study reports a simple strategy for manufacturing Au@Pd bimetallic branched nanoparticles (NPs), which offer a tunable optical response, using polyallylamine-stabilized branched AuNPs as template cores for Pd overgrowth. The palladium content can be altered by manipulating the concentration of PdCl and ascorbic acid (AA) that are injected, which permit an overgrowth of the Pd shell up to ca.

View Article and Find Full Text PDF

This paper describes the synthesis of highly branched gold nanoparticles (AuNPs) through a facile seeded growth approach using poly(allylamine hydrochloride) (PAH) as shape inducing agent. The obtained branched AuNPs present highly tunable optical properties in the Vis-NIR region from ca. 560 nm to 1260 nm.

View Article and Find Full Text PDF

In this work, the successful preparation and characterization of gold nanorods (AuNRs) coated with a mesoporous silica shell (AuNRs@Simes) was achieved. Conjugation with methylene blue (MB) as a model drug using ultrasound-stimulated loading has been explored for further application in light-mediated antibacterial studies. Lyophilization of this conjugated nanosystem was analyzed using trehalose (TRH) as a cryogenic protector.

View Article and Find Full Text PDF

In the present work, the synthesis and characterization of silver triangular nanoplates (AgNTs) and their silica coating composites are reported. Engineering control on the surface coating has demonstrated the possibility to modulate the antibacterial effect. Several AgNT-coated nanomaterials, such as PVP (Polyvinylpyrrolidone) and MHA (16-mercaptohexadecanoic acid) as a stable organic coating system as well as uniform silica coating (≈5 nm) of AgNTs, have been prepared and fully characterized.

View Article and Find Full Text PDF

Red and green are two of the most-preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune-staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most-relevant results on the use of red and green fluorescent dyes in the fields of bio-, chemo- and nanoscience.

View Article and Find Full Text PDF

Invited for this month's cover picture is the BIOSCOPE group of Professors Carlos Lodeiro and José Luis Capelo at the REQUIMTE/UCIBIO-LAQv-FCT University NOVA of Lisbon (Portugal), and their collaborators. The cover picture is devoted to Translational Research, and shows the Portuguese Flag represented by the interaction between cells and Janus gold/silver nanoparticles functionalized with rhodamine (red) and Fluorescein (green) dyes as tools for biomedical translational research. Read the full text of their Review at 10.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed new platinum-tellurium (PtTe) nanoparticles in various sizes using a unique annealing process with a single-source organometallic precursor made from PhTe and HPtCl.
  • The synthesis process allowed control over the nanoparticle size by adjusting the size of the precursor, with the resulting PtTe crystallites measuring between 2.5-6.5 nm.
  • This study contributes to a better understanding of the mechanisms involved in creating organometallic nanomaterials and nanocrystals, specifically using platinum and tellurium.
View Article and Find Full Text PDF

Polyamine ligands are very versatile compounds due to their water solubility and flexibility. In the present work, we have exploited the binding ability of a polyamine molecular linker (L (2-)) bearing different functional groups, which favors the self-assembling of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) into 1D nanochains in aqueous solution. The chainlike assemblies of AuNPs and AgNPs were structurally stable for a long period of time, during which their characteristic optical properties remained unchanged.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvgms4rpsq55pb0j600mtet3m5b9c6969): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once