Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na(+) channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na(+) current observed in native tissue.
View Article and Find Full Text PDFAm J Respir Crit Care Med
October 2012
Rationale: Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown.
Objectives: To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach.
In malignant hyperthermia (MH), mutations in RyR1 underlie direct activation of the channel by volatile anesthetics, leading to muscle contracture and a life-threatening increase in core body temperature. The aim of the present study was to establish whether the associated depletion of sarcoplasmic reticulum (SR) Ca(2+) triggers sarcolemmal Ca(2+) influx via store-operated Ca(2+) entry (SOCE). Samples of vastus medialis muscle were obtained from patients undergoing assessment for MH susceptibility using the in vitro contracture test.
View Article and Find Full Text PDFChanges in skeletal muscle volume induce localized sarcoplasmic reticulum (SR) Ca(2+) release (LCR) events, which are sustained for many minutes, suggesting a possible signaling role in plasticity or pathology. However, the mechanism by which cell volume influences SR Ca(2+) release is uncertain. In the present study, rat flexor digitorum brevis fibers were superfused with isoosmotic Tyrode's solution before exposure to either hyperosmotic (404 mOsm) or hypoosmotic (254 mOsm) solutions, and the effects on cell volume, membrane potential (E(m)), and intracellular Ca(2+) ([Ca(2+)](i)) were determined.
View Article and Find Full Text PDFSingle mechanically skinned extensor digitorum Longus (EDL) rat fibres were used as a model to study the influence of functional t-tubules on the properties of RyR1 in adult skeletal muscle. Fibres were superfused with solutions approximating to the intracellular milieu. Following skinning, the t-tubules re-seal and repolarise, allowing the sarcoplasmic reticulum (SR) Ca2+ release to be activated by field stimulation.
View Article and Find Full Text PDFArch Biochem Biophys
February 2007
In skeletal muscle, Mg(2+) exerts a dual inhibitory effect on RyR1, by competing with Ca(2+) at the activation site and binding to a low affinity Ca(2+)/Mg(2+) inhibitory site. Pharmacological activators of RyR1 must overcome the inhibitory action of Mg(2+) before Ca(2+) efflux can occur. In normal muscle, where the free [Mg(2+)](i) is approximately 1mM, even prolonged exposure to millimolar levels of volatile anesthetics does not initiate SR Ca(2+) release.
View Article and Find Full Text PDFBackground: Recent work suggests that impaired Mg(2+) regulation of the ryanodine receptor is a common feature of both pig and human malignant hyperthermia. Therefore, the influence of [Mg(2+)] on halothane-induced Ca(2+) release from the sarcoplasmic reticulum was studied in malignant hyperthermia-susceptible (MHS) or -nonsusceptible (MHN) muscle.
Methods: Vastus medialis fibers were mechanically skinned and perfused with solutions containing physiologic (1 mm) or reduced concentrations of free [Mg(2+)].
The effect of cytosolic Mg2+ on halothane-induced Ca2+ release from the sarcoplasmic reticulum (SR) was investigated in mechanically skinned fibres from the rat extensor digitorum longus (EDL) muscle. Preparations were perfused with solutions mimicking the intracellular milieu and changes in [Ca2+] were detected using Fura-2 fluorescence. In the presence of 1 mM Mg2+, brief (500 ms) applications of 40 mM halothane failed to induce Ca2+ release from the SR.
View Article and Find Full Text PDFRegulation of the ryanodine receptor (RYR) by Mg(2+) and SR luminal Ca(2+) was studied in mechanically skinned malignant hyperthermia susceptible (MHS) and non-susceptible (MHN) fibres from human vastus medialis. Preparations were perfused with solutions mimicking the intracellular milieu and changes in [Ca(2+)] were detected using fura-2 fluorescence. At 1 mM cytosolic Mg(2+), MHS fibres had a higher sensitivity to caffeine (2-40 mM) than MHN fibres.
View Article and Find Full Text PDF