The grass family (Poaceae), the fourth largest family of flowering plants, encompasses the most economically important cereal, forage, and energy crops, and exhibits a unique gametophytic self-incompatibility (SI) mechanism that is controlled by at least two multiallelic and independent loci, S and Z. Despite intense research efforts over the last six decades, the genes underlying S and Z remain uncharacterized. Here, we report a fine-mapping approach to identify the male component of the S-locus in perennial ryegrass (Lolium perenne L.
View Article and Find Full Text PDFHere we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28,455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order.
View Article and Find Full Text PDFBy using the genotyping-by-sequencing method, it is feasible to characterize genomic relationships directly at the level of family pools and to estimate genomic heritabilities from phenotypes scored on family-pools in outbreeding species. Genotyping-by-sequencing (GBS) has recently become a promising approach for characterizing plant genetic diversity on a genome-wide scale. We use GBS to extend the concept of heritability beyond individuals by genotyping family-pool samples by GBS and computing genomic relationship matrices (GRMs) and genomic heritabilities directly at the level of family-pools from pool-frequencies obtained by sequencing.
View Article and Find Full Text PDFBackground: The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium-Festuca complex show very diverse phenotypes, and many of them are related to agronomically important traits.
View Article and Find Full Text PDFGenotyping-by-Sequencing (GBS) is an excellent tool for characterising genetic variation between plant genomes. To date, its use has been reported only for genotyping of single individuals. However, there are many applications where resolving allele frequencies within populations on a genome-wide scale would be very powerful, examples include the breeding of outbreeding species, varietal protection in outbreeding species, monitoring changes in population allele frequencies.
View Article and Find Full Text PDF