A helical sorbent microtrap consisting of a helical sorbent fixed inside a silicosteel capillary tube is presented. The main parameters that affect the safe sampling time of the helical sorbent microtrap in continuous sampling by a membrane and trap interface for on-line gas chromatographic monitoring of organic volatiles in gaseous samples are examined, taking into account the helical configuration of the sorbent, the presence of the membrane in system, and the properties of the analytes. Thermal desorption of analytes from the helical sorbent trap was also examined having regard to the influence of the turbulent flow generated by the helical sorbent in the heat transfer and the effect of thermal backward flow on the peak shape.
View Article and Find Full Text PDFParameters that affect the permeation of analytes across a thin (0.025 mm) flat membrane of polysiloxane in a membrane and trap interface coupled to a gas chromatograph are examined taking into account a mechanism of mass transport for porous and nonporous materials and the permeation of carrier gas in the direction opposite to that of the analytes. The best permeation rate was reached with hydrogen as carrier gas at a flow-rate between 3 and 5 ml/min, an agitation of analytes outside the membrane above 0.
View Article and Find Full Text PDF