Insect diversification has been catalyzed by widespread specialization on novel hosts - a process underlying exceptional radiations of phytophagous beetles, lepidopterans, parasitoid wasps, and inordinate lineages of symbionts, predators and other trophic specialists. The strict fidelity of many such interspecies associations is posited to hinge on sensory tuning to host-derived cues, a model supported by studies of neural function in host-specific model species. Here, we investigated the sensory basis of symbiotic interactions between a myrmecophile rove beetle and its single, natural host ant species.
View Article and Find Full Text PDFHow evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity.
View Article and Find Full Text PDFObjective: Evaluation of Nepeta cataria as a host with specific endogenous metabolite background for transient expression and metabolic engineering of secondary biosynthetic sequences.
Results: The reporter gene gfp::licBM3 as well as three biosynthetic genes leading to the formation of the cannabinoid precursor olivetolic acid were adopted to the modular cloning standard GoldenBraid, transiently expressed in two chemotypes of N. cataria and compared to Nicotiana benthamiana.
How evolution at the cellular level potentiates change at the macroevolutionary level is a major question in evolutionary biology. With >66,000 described species, rove beetles (Staphylinidae) comprise the largest metazoan family. Their exceptional radiation has been coupled to pervasive biosynthetic innovation whereby numerous lineages bear defensive glands with diverse chemistries.
View Article and Find Full Text PDFHow the functions of multicellular organs emerge from the underlying evolution of cell types is poorly understood. We deconstructed evolution of an organ novelty: a rove beetle gland that secretes a defensive cocktail. We show how gland function arose via assembly of two cell types that manufacture distinct compounds.
View Article and Find Full Text PDFBackground: Ant colonies are plagued by a diversity of arthropod guests, which adopt various strategies to avoid or to withstand host attacks. Chemical mimicry of host recognition cues is, for example, a common integration strategy of ant guests. The morphological gestalt and body size of ant guests have long been argued to also affect host hostility, but quantitative studies testing these predictions are largely missing.
View Article and Find Full Text PDFTropical rainforests are among the most diverse biomes on Earth. While species inventories are far from complete for any tropical rainforest, even less is known about the intricate species interactions that form the basis of these ecological communities. One fascinating but poorly studied example are the symbiotic associations between army ants and their rich assemblages of parasitic arthropod guests.
View Article and Find Full Text PDFWhen threatened, the harvestman (Opiliones: Phalangiidae) ejects a secretion against offenders. The secretion originates from large prosomal scent glands and is mainly composed of two isomers of 4-hydroxy-5-octyl-4,5-dihydro-3-furan-2-one (), a β-hydroxy-γ-lactone. The compounds were characterized by GC-MS of their microreaction derivatives, HRMS, and NMR.
View Article and Find Full Text PDFTemperature influences all biochemical and biophysiological processes within an organism. By extension, it also affects those ecological interactions that are mediated by gland-produced chemical compounds, such as reservoir-based chemical defense. Herein, we investigate how environmental temperature affects the regeneration of defensive secretions and influences the efficacy of chemical defense in a model predator-prey system: the oribatid mite Archegozetes longisetosus and the predaceous rove beetle Stenus juno.
View Article and Find Full Text PDFThe ability to synthesize simple aromatic compounds is well known from bacteria, fungi and plants, which all share an exclusive biosynthetic route-the shikimic acid pathway. Some of these organisms further evolved the polyketide pathway to form core benzenoids via a head-to-tail condensation of polyketide precursors. Arthropods supposedly lack the ability to synthesize aromatics and instead rely on aromatic amino acids acquired from food, or from symbiotic microorganisms.
View Article and Find Full Text PDFThe fatty acid (FA) composition of lipids in animals is influenced by factors such as species, life stage, availability and type of food, as well as the ability to synthesize certain FAs de novo. We investigated the effect of starvation on the neutral lipid (NLFA) and phospholipid (PLFA) fatty acid patterns of the oribatid mite Archegozetes longisetosus Aoki. Furthermore, we performed stable-isotope labeled precursors feeding experiments under axenic conditions to delineate de novo FA synthesis by profiling C and deuterium incorporation via single-ion monitoring.
View Article and Find Full Text PDFAcross the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation.
View Article and Find Full Text PDFArmy ants are among the top arthropod predators and considered keystone species in tropical ecosystems. During daily mass raids with many thousand workers, army ants hunt live prey, likely exerting strong top-down control on prey species. Many tropical sites exhibit a high army ant species diversity (>20 species), suggesting that sympatric species partition the available prey niches.
View Article and Find Full Text PDFBackground: Trait based functional and community ecology is . Most studies, however, ignore phenotypical diversity by characterizing entire species considering only trait means rather than their variability. Phenotypical variability may arise from genotypical differences or from ecological factors (e.
View Article and Find Full Text PDFBackground: The use and partitioning of trophic resources is a central aspect of community function. On the ground of tropical forests, dozens of ant species may be found together and ecological mechanisms should act to allow such coexistence. One hypothesis states that niche specialization is higher in the tropics, compared to temperate regions.
View Article and Find Full Text PDFArmy ants are keystone species in many tropical ecosystems. Yet, little is known about the chemical compounds involved in army ant communication. In the present study, we analyzed the volatile mandibular gland secretions-triggers of ant alarm responses-of six Neotropical army ant species of the genus (outgroup: ).
View Article and Find Full Text PDFOribatid mites are abundant and diverse decomposers in almost all terrestrial microhabitats, especially in temperate forests. Although their functional importance in the decomposition system in these forests has been investigated, spatio-temporal patterns of oribatid mite communities inhabiting different microhabitats have largely been neglected. Therefore, we (i) investigated seasonal fluctuation (monthly over one year) in oribatid-mite community structure and specificity to three microhabitats (moss, dead wood and litter) and (ii) analyzed the influence of air temperature and overall air humidity on seasonal community changes.
View Article and Find Full Text PDFHost-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera and (Staphylinidae: Aleocharinae: Ecitocharini).
View Article and Find Full Text PDFA great variety of parasites and parasitoids exploit ant societies. Among them are the Mesostigmata mites, a particularly common and diverse group of ant-associated arthropods. While parasitism is ubiquitous in Mesostigmata, parasitoidism has only been described in the genus .
View Article and Find Full Text PDFAt the basis of a trophic web, coprophagous animals like dung beetles (Scarabaeoidea) utilize resources that may have advantages (easy gain and handling) as well as drawbacks (formerly processed food). Several studies have characterized the nutrients, e.g.
View Article and Find Full Text PDFBackground: Trophic interactions are a fundamental aspect of ecosystem functioning, but often difficult to observe directly. Several indirect techniques, such as fatty acid analysis, were developed to assess these interactions. Fatty acid profiles may indicate dietary differences, while individual fatty acids can be used as biomarkers.
View Article and Find Full Text PDF