Publications by authors named "Adrian Bertschi"

Bacterial transcription factors (TFs) with helix-turn-helix (HTH) DNA-binding domains have been widely explored to build orthogonal transcriptional regulation systems in mammalian cells. Here we capitalize on the modular structure of these proteins to build a framework for multi-input logic gates relying on serial combinations of inducible protein-protein interactions. We found that for some TFs, their HTH domain alone is sufficient for DNA binding.

View Article and Find Full Text PDF

Precise control of the delivery of therapeutic proteins is critical for gene- and cell-based therapies, and expression should only be switched on in the presence of a specific trigger signal of appropriate magnitude. Focusing on the advantages of delivering the trigger by inhalation, we have developed a mammalian synthetic gene switch that enables regulation of transgene expression by exposure to the semi-volatile small molecule acetoin, a widely used, FDA-approved food flavor additive. The gene switch capitalizes on the bacterial regulatory protein AcoR fused to a mammalian transactivation domain, which binds to promoter regions with specific DNA sequences in the presence of acetoin and dose-dependently activates expression of downstream transgenes.

View Article and Find Full Text PDF

Cellular therapies remain constrained by the limited availability of sensors for disease markers. Here we present an integrated target-to-receptor pipeline for constructing a customizable advanced modular bispecific extracellular receptor (AMBER) that combines our generalized extracellular molecule sensor (GEMS) system with a high-throughput platform for generating designed ankyrin repeat proteins (DARPins). For proof of concept, we chose human fibrin degradation products (FDPs) as markers with high clinical relevance and screened a DARPin library for FDP binders.

View Article and Find Full Text PDF

Body temperature is maintained at around 37 °C in humans, but may rise to 40 °C or more during high-grade fever, which occurs in most adults who are seriously ill. However, endogenous temperature sensors, such as ion channels and heat-shock promoters, are fully activated only at noxious temperatures above this range, making them unsuitable for medical applications. Here, a genetically encoded protein thermometer (human enhanced gene activation thermometer; HEAT) is designed that can trigger transgene expression in the range of 37-40 °C by linking a mutant coiled-coil temperature-responsive protein sensor to a synthetic transcription factor.

View Article and Find Full Text PDF

Current molecular cloning strategies generally lack inter-compatibility, are not strictly modular, or are not applicable to engineer multi-gene expression vectors for transient and stable integration. A standardized molecular cloning platform would advance research, for example, by promoting exchange of vectors between groups. Here, we present a versatile plasmid architecture for mammalian synthetic biology, which we designate VAMSyB, consisting of a three-tier vector family.

View Article and Find Full Text PDF

In this study, we designed and built a gene switch that employs metabolically inert l-glucose to regulate transgene expression in mammalian cells via d-idonate-mediated control of the bacterial regulator LgnR. To this end, we engineered a metabolic cascade in mammalian cells to produce the inducer molecule d-idonate from its precursor l-glucose by ectopically expressing the Paracoccus species 43P-derived catabolic enzymes LgdA, LgnH, and LgnI. To obtain ON- and OFF-switches, we fused LgnR to the human transcriptional silencer domain Krüppel associated box (KRAB) and the viral trans-activator domain VP16, respectively.

View Article and Find Full Text PDF

Orthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but tools to control the involved processes are very limited. Here, we repurpose components of bacterial two-component systems (TCSs) for chemically induced phosphotransfer in mammalian cells.

View Article and Find Full Text PDF

Background: Despite major advancements in immunotherapy among a number of solid tumors, response rates among ovarian cancer patients remain modest. Standard treatment for ovarian cancer is still surgery followed by taxane- and platinum-based chemotherapy. Thus, there is an urgent need to develop novel treatment options for clinical translation.

View Article and Find Full Text PDF