Tiny InGaN micro-LEDs (-LEDs) play a pivotal role in emerging display technologies, particularly augmented reality (AR) applications. Achieving both high internal quantum efficiency (IQE) and efficient light extraction efficiency (LEE) is essential. While wet chemical etching can recover the IQE after dry etching, it alters the pixel shape, impacting optical properties and reducing the LEE.
View Article and Find Full Text PDFMicro-light emitting diodes (µ-LEDs) are considered the key enabler for various high-resolution micro-display applications such as augmented reality, smartphones or head-up displays. Within this study we fabricated nitride-based µ-LED arrays in a thin film chip architecture with lateral pixel sizes down to 1 µm. A metal mirror on the p-side enhances the light outcoupling via the n-side after removal of the epitaxial growth substrate.
View Article and Find Full Text PDFMicro-light emitting diodes (µ-LEDs) suffer from a drastic drop in internal quantum efficiency that emerges with the miniaturization of pixels down to the single micrometer size regime. In addition, the light extraction efficiency (LEE) and far field characteristics change significantly as the pixel size approaches the wavelength of the emitted light. In this work, we systematically investigate the fundamental optical properties of nitride-based µ-LEDs with the focus on pixel sizes from 1 µm to 5 µm and various pixel sidewall angles from 0 to 60 using finite-difference time-domain simulations.
View Article and Find Full Text PDFBesides high-power light-emitting diodes (LEDs) with dimensions in the range of mm, micro-LEDs (μLEDs) are increasingly gaining interest today, motivated by the future applications of μLEDs in augmented reality displays or for nanometrology and sensor technology. A key aspect of this miniaturization is the influence of the structure size on the electrical and optical properties of μLEDs. Thus, in this article, investigations of the size dependence of the electro-optical properties of μLEDs, with diameters in the range of 20 to 0.
View Article and Find Full Text PDFWe study the photoluminescence emission from planar and 3D InGaN/GaN LED structures, excited using a femtosecond laser with fluences close to sample's damage threshold. For a typical laser system consisting of a titanium-sapphire regenerative amplifier, which is pumping an optical parametric amplifier delivering output pulses of a few tens of MW pulse power with ∼100 fs pulse duration, 1 kHz repetition rate and a wavelength of 325 nm, we determine the damage threshold of the InGaN/GaN LEDs to be about 0.05 J/cm.
View Article and Find Full Text PDFNitride-based three-dimensional core-shell nanorods (NRs) are promising candidates for the achievement of highly efficient optoelectronic devices. For a detailed understanding of the complex core-shell layer structure of InGaN/GaN NRs, a systematic determination and correlation of the structural, compositional, and optical properties on a nanometer-scale is essential. In particular, the combination of low-temperature cathodoluminescence (CL) spectroscopy directly performed in a scanning transmission electron microscope (STEM), and quantitative high-angle annular dark field imaging enables a comprehensive study of the nanoscopic attributes of the individual shell layers.
View Article and Find Full Text PDFWe suggest a method for chemical mapping that is based on scanning transmission electron microscopy (STEM) imaging with a high-angle annular dark field (HAADF) detector. The analysis method uses a comparison of intensity normalized with respect to the incident electron beam with intensity calculated employing the frozen lattice approximation. This procedure is validated with an In(0.
View Article and Find Full Text PDFIn scanning transmission electron microscopy using a high-angle annular dark field detector, image intensity strongly depends on specimen thickness and composition. In this paper we show that measurement of image intensities relative to the intensity of the incoming electron beam allows direct comparison with simulated image intensities, and thus quantitative measurement of specimen thickness and composition. Simulations were carried out with the frozen lattice and absorptive potential multislice methods.
View Article and Find Full Text PDF