Publications by authors named "Adrian Adamescu"

Reaction pathway information and transition states are crucial for understanding adsorption mechanisms of pollutants, such as dimethylarsinic acid (DMA), at the liquid-solid interface. We report a detailed computational analysis of the complexes of DMA on iron (oxyhydr)oxides, including activation energies, transition states, Gibbs free energies of adsorption, Mulliken charges, charge redistribution upon adsorption, and stretching frequencies of As-O bonds for comparison with experimental spectroscopic data. Calculations were performed using density functional theory (DFT) at the B3LYP/6-311+G(d,p) level using both implicit and explicit hydration.

View Article and Find Full Text PDF

Aromatic organoarsenicals, such as p-arsanilic acid (pAsA), are still used today as feed additives in the poultry and swine industries in developing countries. Through the application of contaminated litter as a fertilizer, these compounds enter the environment and interact with reactive soil components such as iron and aluminum oxides. Little is known about these surface interactions at the molecular level.

View Article and Find Full Text PDF

Dimethylarsinic Acid (DMA) belongs to an important class of organoarsenical compounds commonly detected in arsenic speciation studies of environmental samples and pyrolysis products of fossil fuels. Transformation of DMA under certain conditions leads to the formation of other forms of arsenic, which could be more toxic than DMA to biota, and more efficient in deactivating catalysts used in petrochemical refining. Published surface sensitive X-ray and infrared spectroscopic work suggested that DMA simultaneously forms inner- and outer-sphere complexes with iron-(oxyhydr)oxides.

View Article and Find Full Text PDF

The surface chemistry of methylated arsenicals with ubiquitous geosorbents and industrial catalysts is poorly understood. These arsenic compounds pose both a health and an environmental risk in addition to being a challenge to the energy industry. We report herein a detailed spectroscopic analysis of the surface structure of dimethylarsinic acid (DMA) adsorbed on hematite and goethite using attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

View Article and Find Full Text PDF