Publications by authors named "Adriaan Minnaard"

Article Synopsis
  • Mycobacterium tuberculosis (Mtb) makes a special molecule called 1-tuberculosinyladenosine (1-TbAd) that helps it survive in human immune cells by blocking their functions.
  • Researchers found that certain genes are important for making 1-TbAd and used new software to study how Mtb produces lipids, leading to discoveries of many related molecules.
  • They also discovered that the genes for making 1-TbAd are present in some bacteria outside the usual group known for tuberculosis, showing how these genes could have spread and suggesting that these molecules might be important for understanding human TB disease.
View Article and Find Full Text PDF

Dissectol A is a rearranged terpene glycoside isolated from several flowering plants. Starting from glucose, the densely functionalized bicyclic structure has been prepared site-selective oxidation and an intramolecular allylic alkylation reaction with an enediolate as the nucleophile. Despite earlier reports, dissectol A is not effective at inhibiting DevRS signaling in whole-cell and does not inhibit growth of the bacterium.

View Article and Find Full Text PDF

This study describes the synthesis of a new class of surfactants that is based on the bioderived building blocks fructose, fatty acid methyl esters (FAME), and hydroxy propionitrile (cyanoethanol, 3-HP). The synthesis is scalable, is carried out at ambient conditions, and does not require chromatography. The produced surfactants have excellent surfactant properties with critical micelle concentrations and Krafft points comparable to current glucose-based surfactants.

View Article and Find Full Text PDF

The coatings industry is aiming to replace petrochemical-based binders in products such as paints and lacquers with bio-based alternatives. Native polysaccharide additives are already used, especially as adhesives, and here we show the use of oxidised dextran as a bio-based binder additive. Linear dextran with a molecular weight of 6 kDa was aerobically oxidised in water at the C3-position of its glucose units, catalysed by [(neocuproine)PdOAc](OTf).

View Article and Find Full Text PDF

DAT is a member of the diacyl trehalose family (DAT) of antigenic glycolipids located in the mycomembrane of Mycobacterium tuberculosis (Mtb). Recently it was shown that the molecular structure of DAT had been incorrectly assigned, but the correct structure remained elusive. Herein, the correct molecular structure of DAT and its methyl-branched acyl substituent mycolipanolic acid is determined.

View Article and Find Full Text PDF

The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency.

View Article and Find Full Text PDF

Correction for 'π-Facial selectivity in the Diels-Alder reaction of glucosamine-based chiral furans and maleimides' by Cornelis H. M. van der Loo , , 2023, , 1888-1894, https://doi.

View Article and Find Full Text PDF

The synthesis of aromatic compounds from biomass-derived furans is a key strategy in the pursuit of a sustainable economy. Within this field, a Diels-Alder/aromatization cascade reaction with chitin-based furans is emerging as a powerful tool for the synthesis of nitrogen-containing aromatics. In this study we present the conversion of chitin-based 3-acetamido-furfural (3A5F) into an array of di- and tri-substituted anilides in good to high yields (62-90%) a hydrazone mediated Diels-Alder/aromatization sequence.

View Article and Find Full Text PDF

The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids.

View Article and Find Full Text PDF

Although leprosy (Hansen's disease) is one of the oldest known diseases, the pathogenicity of () remains enigmatic. Indeed, the cell wall components responsible for the immune response against are as yet largely unidentified. We reveal here phenolic glycolipid-III (PGL-III) as an -specific ligand for the immune receptor Mincle.

View Article and Find Full Text PDF

Thioglycosides or S-linked-glycosides are important glycomimetics. These thioglycosides are often prepared by glycosylating deoxythio sugar acceptors, which are synthesized elaborate protecting group manipulations. We discovered that a carbonyl group, formed by site-selective oxidation of unprotected saccharides, can be converted into a thiol moiety.

View Article and Find Full Text PDF

A predictive model, shaped as a set of rules, is presented that predicts site-selectivity in the mono-oxidation of diols by palladium-neocuproine catalysis. For this, the factors that govern this site-selectivity within diols and between different diols have been studied both experimentally and with computation. It is shown that an electronegative substituent antiperiplanar to the C-H bond retards hydride abstraction, resulting in a lower reactivity.

View Article and Find Full Text PDF
Article Synopsis
  • Female fruit flies choose where to lay eggs based on the amount of pheromones present, which indicates prior visitors to the site.
  • They prefer locations with moderate pheromone levels, avoiding sites that are either too low or too high in concentration.
  • The decision-making process involves specific odorant receptors responding to two key pheromones: 11-cis-Vaccenyl Acetate for visitor count and heptanal as a co-factor.
View Article and Find Full Text PDF

Quinuclidine-mediated electrochemical oxidation of glycopyranosides provides C3-ketosaccharides with high selectivity and good yields. The method is a versatile alternative to Pd-catalyzed or photochemical oxidation and is complementary to the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated C6-selective oxidation. Contrary to the electrochemical oxidation of methylene and methine groups, the reaction proceeds without oxygen.

View Article and Find Full Text PDF

Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M.

View Article and Find Full Text PDF

Furans derived from carbohydrate feedstocks are a versatile class of bio-renewable building blocks and have been used extensively to access 7-oxanorbornenes Diels-Alder reactions. Due to their substitution patterns these furans typically have two different π-faces and therefore furnish racemates in [4 + 2]-cycloadditions. We report the use of an enantiopure glucosamine derived furan that under kinetic conditions predominantly affords the -product with a high π-face selectivity of .

View Article and Find Full Text PDF

The first total synthesis of elmonin and pratenone A, two complex rearranged angucyclinones from , is reported. Using -directed C-H functionalization, the key naphthalene fragment present in both synthetic targets was efficiently prepared. Coupling to two anisole-derived fragments gave access to the natural products, in which elmonin was prepared using a biomimetic spiro-ketalization.

View Article and Find Full Text PDF

Oligosaccharides, either as such or as part of glycolipids, glycopeptides, or glycoproteins, are ubiquitous in nature and fulfill important roles in the living cell. Also in medicine and to some extent in materials, oligosaccharides play an important role. In order to study their function, modifying naturally occurring oligosaccharides, and building in reactive groups and reporter groups in oligosaccharides, are key strategies.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring ways to modify unprotected glycosides without using protecting groups, focusing on site-selective oxidation methods.
  • By treating the resulting trityl hydrazone with butyl hypochlorite and a hydrogen atom donor, they successfully introduce a chloride substituent to various mono- and disaccharides.
  • This method allows for controlled stereoselectivity and introduces a new geminal dichlorination reaction, presenting a more efficient approach compared to traditional methods that often result in overchlorination.
View Article and Find Full Text PDF

The continuous emergence of antimicrobial resistance is causing a threat to patients infected by multidrug-resistant pathogens. In particular, the clinical use of aminoglycoside antibiotics, broad-spectrum antibacterials of last resort, is limited due to rising bacterial resistance. One of the major resistance mechanisms in Gram-positive and Gram-negative bacteria is phosphorylation of these amino sugars at the 3'-position by O-phosphotransferases [APH(3')s].

View Article and Find Full Text PDF

With a CoIII(salen)OTs catalyst, dibenzyl phosphate ring-opens a variety of terminal epoxides with excellent regio-selectively and yields up to 85%. The reaction is used in a highly efficient synthesis of enantiopure mixed-diacyl phosphatidic acids, including a photoswitchable phosphatidic acid mimic.

View Article and Find Full Text PDF

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells.

View Article and Find Full Text PDF

(Mtb) cells are known to synthesize very long chain (C60-90) structurally complex mycolic acids with various functional groups. In this study, we applied linear ion-trap (LIT) multiple-stage mass spectrometry (MS), combined with high-resolution mass spectrometry to study the mechanisms underlying the fragmentation processes of mycolic acid standards desorbed as lithiated adduct ions by ESI. This is followed by structural characterization of a Mtb mycolic acid family (Bovine strain).

View Article and Find Full Text PDF

The first multi-gram synthesis of enantiopure dihydroxyethyl acetamidofuran (Di-HAF) is reported. Under optimized conditions, GlcNAc dehydrates in pyridine in the presence of phenylboronic acid and triflic acid to afford Di-HAF in 73% yield and 99.3% ee in just 30 minutes.

View Article and Find Full Text PDF

Whereas proteolytic cleavage is crucial for peptide presentation by classical major histocompatibility complex (MHC) proteins to T cells, glycolipids presented by CD1 molecules are typically presented in an unmodified form. However, the mycobacterial lipid antigen mannosyl-β1-phosphomycoketide (MPM) may be processed through hydrolysis in antigen presenting cells, forming mannose and phosphomycoketide (PM). To further test the hypothesis that some lipid antigens are processed, and to generate antigens that lead to defined epitopes for future tuberculosis vaccines or diagnostic tests, we aimed to create hydrolysis-resistant MPM variants that retain their antigenicity.

View Article and Find Full Text PDF