Inertial measurement units (IMUs) are key components of various applications including navigation, robotics, aerospace, and automotive systems. IMU sensor characteristics have a significant impact on the accuracy and reliability of these applications. In particular, noise characteristics and bias stability are critical for proper filter settings to perform a combined GNSS/IMU solution.
View Article and Find Full Text PDFWith great potential for being applied to Internet of Things (IoT) applications, the concept of cloud-based Snapshot Real Time Kinematics (SRTK) was proposed and its feasibility under zero-baseline configuration was confirmed recently by the authors. This article first introduces the general workflow of the SRTK engine, as well as a discussion on the challenges of achieving an SRTK fix using actual snapshot data. This work also describes a novel solution to ensure a nanosecond level absolute timing accuracy in order to compute highly precise satellite coordinates, which is required for SRTK.
View Article and Find Full Text PDFA preliminary analysis of Galileo F/NAV broadcast Clock and Ephemeris is performed in this paper with 43 months of data. Using consolidated Galileo Receiver Independent Exchange (RINEX) navigation files, automated navigation data monitoring is applied from 1 January 2017 to 31 July 2020 to detect and verify potential faults in the satellite broadcast navigation data. Based on these observation results, the Galileo Signal-in-Space is assessed, and the probability of satellite failure is estimated.
View Article and Find Full Text PDFGlobal Navigation Satellite System (GNSS) data can be used in a myriad of ways. The current number of applications exceed by far those originally GNSS was designed for. As an example, the present Special Issue on GNSS Data Processing and Navigation compiles 14 international contributions covering several aspects of GNSS research.
View Article and Find Full Text PDFThe Multi-constellation Global Navigation Satellite System (Multi-GNSS) has become the standard implementation of high accuracy positioning and navigation applications. It is well known that the noise of code and phase measurements depend on GNSS constellation. Then, Helmert variance component estimation (HVCE) is usually used to adjust the contributions of different GNSS constellations by determining their individual variances of unit weight.
View Article and Find Full Text PDFThe present contribution evaluates how the European Geostationary Navigation Overlay System (EGNOS) meets the International Maritime Organization (IMO) requirements established in its Resolution A.1046 for navigation in harbor entrances, harbor approaches, and coastal waters: 99.8% of signal availability, 99.
View Article and Find Full Text PDF