Background: Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process.
View Article and Find Full Text PDFAntibiotic resistance has exponentially increased during the last years. It is necessary to develop new antimicrobial drugs to prevent and treat infectious diseases caused by multidrug- or extensively-drug resistant (MDR/XDR)-bacteria. Host Defense Peptides (HDPs) have a versatile role, acting as antimicrobial peptides and regulators of several innate immunity functions.
View Article and Find Full Text PDFRecombinant protein production in bacteria is often accompanied by the formation of aggregates, known as inclusion bodies (IBs). Although several strategies have been developed to minimize protein aggregation, many heterologous proteins are produced in aggregated form. For these proteins, purification necessarily requires processes of solubilization and refolding, often involving denaturing agents.
View Article and Find Full Text PDFAntimicrobial resistance is a global threat that is worryingly rising in the livestock sector. Among the proposed strategies, immunostimulant development appears an interesting approach to increase animal resilience at critical production points. The use of nanoparticles based on cytokine aggregates, called inclusion bodies (IBs), has been demonstrated as a new source of immunostimulants in aquaculture.
View Article and Find Full Text PDFThe growing emergence of microorganisms resistant to antibiotics has prompted the development of alternative antimicrobial therapies. Among them, the antimicrobial peptides produced by innate immunity, which are also known as host defense peptides (HDPs), hold great potential. They have been shown to exert activity against both Gram-positive and Gram-negative bacteria, including those resistant to antibiotics.
View Article and Find Full Text PDFCombining several innate immune peptides into a single recombinant antimicrobial and immunomodulatory polypeptide has been recently demonstrated. However, the versatility of the multidomain design, the role that each domain plays and how the sequence edition of the different domains affects their final protein activity is unknown. Parental multidomain antimicrobial and immunomodulatory protein JAMF1 and several protein variants (JAMF1.
View Article and Find Full Text PDFBackground: Although most of antimicrobial peptides (AMPs), being relatively short, are produced by chemical synthesis, several AMPs have been produced using recombinant technology. However, AMPs could be cytotoxic to the producer cell, and if small they can be easily degraded. The objective of this study was to produce a multidomain antimicrobial protein based on recombinant protein nanoclusters to increase the yield, stability and effectivity.
View Article and Find Full Text PDF