Increased expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) often correlates with tumor aggressiveness and drug resistance in cancer. We have recently reported that BCAT1 was overexpressed in a subgroup of T-cell acute lymphoblastic (T-ALL) samples, especially those with NOTCH1 activating mutations. Interestingly, BCAT1-depleted cells showed pronounced sensitivity to DNA-damaging agents such as etoposide; however, how BCAT1 regulates this sensitivity remains uncertain.
View Article and Find Full Text PDFHigh levels of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) have been associated with tumor aggressiveness and drug resistance in several cancer types. Nevertheless, the mechanistic role of BCAT1 in T-cell acute lymphoblastic leukemia (T-ALL) remains uncertain. We provide evidence that Bcat1 was over-expressed following NOTCH1-induced transformation of leukemic progenitors and that NOTCH1 directly controlled BCAT1 expression by binding to a BCAT1 promoter.
View Article and Find Full Text PDFIntroduction: The conversion of dietary inorganic nitrate (NO3-) to nitric oxide (NO) is a non-canonical pathway that plays an important role in NO biology, especially under pathological conditions. Inorganic NO3- supplementation is a proven method for controlling mild hypertension. Recent reports have suggested that another gaseous transmitter, hydrogen sulfide (H2S), influences NO biosynthesis and metabolism.
View Article and Find Full Text PDFIn response to environmental stimuli, macrophages change their nutrient consumption and undergo an early metabolic adaptation that progressively shapes their polarization state. During the transient, early phase of pro-inflammatory macrophage activation, an increase in tricarboxylic acid (TCA) cycle activity has been reported, but the relative contribution of branched-chain amino acid (BCAA) leucine remains to be determined. Here, we show that glucose but not glutamine is a major contributor of the increase in TCA cycle metabolites during early macrophage activation in humans.
View Article and Find Full Text PDFBranched-chain aminotransferases (BCAT) are enzymes that initiate the catabolism of branched-chain amino acids (BCAA), such as leucine, thereby providing macromolecule precursors; however, the function of BCATs in macrophages is unknown. Here we show that BCAT1 is the predominant BCAT isoform in human primary macrophages. We identify ERG240 as a leucine analogue that blocks BCAT1 activity.
View Article and Find Full Text PDFEfrapeptins (EF), a family of fungal peptides, inhibit proteasomal enzymatic activities and the in vitro and in vivo growth of HT-29 cells. They are also known inhibitors of F(1)F(0)-ATPase, a mitochondrial enzyme that functions as an Hsp90 co-chaperone. We have previously shown that treatment of cancer cells with EF results in disruption of the Hsp90:F(1)F(0)-ATPase complex and inhibition of Hsp90 chaperone activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2006
Inhibition of heat shock protein 90 (Hsp90) has emerged as a novel intervention for the treatment of solid tumors and leukemias. Here, we report that F(1)F(0)-ATP synthase, the enzyme responsible for the mitochondrial production of ATP, is a co-chaperone of Hsp90. F(1)F(0)-ATP synthase co-immunoprecipitates with Hsp90 and Hsp90-client proteins in cell lysates of MCF-7, T47D, MDA-MB-453, and HT-29 cancer cells.
View Article and Find Full Text PDFAn association between cancer and thrombosis has been recognized for more than a century. However, the manner by which tumor growth is regulated by coagulation in vivo remains unclear. To assess the role of coagulation on tumor growth, in vivo, we tested coagulation inhibitors specific for either tissue factor (TF)/factor VIIa (fVIIa) complexes or factor Xa (fXa) for antitumor activity.
View Article and Find Full Text PDF