Publications by authors named "Adolfo Rodriguez-Eguren"

In vitro embryo culture often falls short of mimicking the physiological dynamism occurring in the reproductive tract, prompting developmental plasticity in mammalian embryos with consequential genotypic and phenotypic deviations. Recent research highlights the potential of biological derivatives in in vitro culture to mitigate these effects, being the extracellular matrix (ECM) one of the most important components in retaining structural and biological signals derived from the native source tissue. Current bioengineering techniques could provide ECM-based biomaterials mimicking the native environment and offering optimal embryonic development.

View Article and Find Full Text PDF

Premature ovarian insufficiency (POI) means menopause before 40 years of age affecting about 1 % of women. Approaches based on cell therapy and the paracrine effects of stem cells or bioproducts such as platelet-rich plasma have been proposed, but concerns remain about undesired systemic effects, as well as the need to optimize delivery methods through bioengineering methods. This study explores the efficacy of decellularized bovine ovarian cortex extracellular matrix (OvaECM) hydrogels alone and as a growth factor (GF) carrier (OvaECM+GF) in a chemotherapy-induced POI murine model.

View Article and Find Full Text PDF

Background: The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e.

View Article and Find Full Text PDF

The endometrium plays a vital role in fertility, providing a receptive environment for embryo implantation and development. Understanding the endometrial physiology is essential for developing new strategies to improve reproductive healthcare. Human endometrial organoids (hEOs) are emerging as powerful models for translational research and personalized medicine.

View Article and Find Full Text PDF

Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids.

View Article and Find Full Text PDF

Research aimed at preserving female fertility is increasingly using bioengineering techniques to develop new platforms capable of supporting ovarian cell function in vitro and in vivo. Natural hydrogels (alginate, collagen, and fibrin) have been the most exploited approaches; however they are biologically inert and/or biochemically simple. Thus, establishing a suitable biomimetic hydrogel from decellularized ovarian cortex (OC) extracellular matrix (OvaECM) could provide a complex native biomaterial for follicle development and oocyte maturation.

View Article and Find Full Text PDF

There are several conditions that lead to female infertility, where traditional or conventional treatments have limited efficacy. In these challenging scenarios, stem cell (SC) therapies have been investigated as alternative treatment strategies. Human umbilical cord (hUC) mesenchymal stem cells (hUC-MSC), along with their secreted paracrine factors, extracts, and biomolecules, have emerged as promising therapeutic alternatives in regenerative medicine, due to their remarkable potential to promote anti-inflammatory and regenerative processes more efficiently than other autologous treatments.

View Article and Find Full Text PDF

Study Question: Can human umbilical cord platelet-rich plasma (hUC-PRP) efficiently treat endometrial damage and restore fertility in a preclinical murine model?

Summary Answer: Local application of hUC-PRP promotes tissue regeneration and fertility restoration in a murine model of Asherman syndrome and endometrial atrophy (AS/EA).

What Is Known Already: AS/EA are well-described endometrial pathologies that cause infertility; however, there are currently no gold-standard treatments available. Recent reports have described the successful use of human platelet-rich plasma in reproductive medicine, and its regenerative potential is further enhanced using hUC-PRP, due to the ample growth factors and reduced pro-inflammatory cytokines in the latter.

View Article and Find Full Text PDF

Bioengineering and reproductive medicine have progressed shoulder to shoulder for several decades. A key point of overlap is the development and clinical translation of technologies to support reproductive health, e.g.

View Article and Find Full Text PDF

Extracellular matrix (ECM) hydrogels obtained from decellularized tissues are promising biocompatible materials for tissue regeneration. These biomaterials may provide important options for endometrial pathologies such as Asherman's syndrome and endometrial atrophy, which lack effective therapies thus far. First, we performed a proteomic analysis of a decellularized endometrial porcine hydrogel (EndoECM) to describe the specific role of ECM proteins related to regenerative processes.

View Article and Find Full Text PDF

Adult stem cells (ASCs) were long suspected to exist in the endometrium. Indeed, several types of endometrial ASCs were identified in rodents and humans through diverse isolation and characterization techniques. Putative stromal and epithelial stem cell niches were identified in murine models using label-retention techniques.

View Article and Find Full Text PDF

Coenzyme Q is an essential lipid with redox capacity that is present in all organisms. In yeast its biosynthesis depends on a multiprotein complex in which Coq7 protein has both catalytic and regulatory functions. Coq7 modulates CoQ levels through a phosphorylation cycle, where dephosphorylation of three amino acids (Ser/Thr) by the mitochondrial phosphatase Ptc7 increases the levels of CoQ.

View Article and Find Full Text PDF