Rich momentum-dependent electronic structure naturally arises in solids with long-range crystalline symmetry. Reliable and scalable quantum technologies rely on materials that are either not perfect crystals or non-crystalline, breaking translational symmetry. This poses the fundamental questions of whether coherent momentum-dependent electronic states can arise without long-range order, and how they can be characterized.
View Article and Find Full Text PDFThe chiral anomaly - a hallmark of chiral spin-1/2 Weyl fermions - is an imbalance between left- and right-moving particles that underpins phenomena such as particle decay and negative longitudinal magnetoresistance in Weyl semimetals. The discovery that chiral crystals can host higher-spin generalizations of Weyl quasiparticles without high-energy counterparts, known as multifold fermions, raises the fundamental question of whether the chiral anomaly is a more general phenomenon. Answering this question requires materials with chiral quasiparticles within a sizable energy window around the Fermi level that are unaffected by extrinsic effects such as current jetting.
View Article and Find Full Text PDFThe discovery of the Hat, an aperiodic monotile, has revealed novel mathematical aspects of aperiodic tilings. However, the physics of particles propagating in such a setting remains unexplored. In this work we study spectral and transport properties of a tight-binding model defined on the Hat.
View Article and Find Full Text PDFIn recent times the chiral semimetal cobalt monosilicide (CoSi) has emerged as a prototypical, nearly ideal topological conductor hosting giant, topologically protected Fermi arcs. Exotic topological quantum properties have already been identified in CoSi bulk single crystals. However, CoSi is also known for being prone to intrinsic disorder and inhomogeneities, which, despite topological protection, risk jeopardizing its topological transport features.
View Article and Find Full Text PDFWe show that a chiral spin liquid spontaneously emerges in partially amorphous, polycrystalline, or ion-irradiated Kitaev materials. In these systems, time-reversal symmetry is broken spontaneously due to a nonzero density of plaquettes with an odd number of edges n_{odd}. This mechanism opens a sizable gap, at small n_{odd} compatible with that of typical amorphous materials and polycrystals, and which can alternatively be induced by ion irradiation.
View Article and Find Full Text PDFQuantum Hall (QH) edge channels propagating along the periphery of two-dimensional (2D) electron gases under perpendicular magnetic field are a major paradigm in physics. However, groundbreaking experiments that could use them in graphene are hampered by the conjecture that QH edge channels undergo a reconstruction with additional nontopological upstream modes. By performing scanning tunneling spectroscopy up to the edge of a graphene flake on hexagonal boron nitride, we show that QH edge channels are confined to a few magnetic lengths at the crystal edges.
View Article and Find Full Text PDFCrystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous BiSe thin films host a number of two-dimensional surface conduction channels.
View Article and Find Full Text PDFWhen electrons populate a flat band their kinetic energy becomes negligible, forcing them to organize in exotic many-body states to minimize their Coulomb energy. The zeroth Landau level of graphene under a magnetic field is a particularly interesting strongly interacting flat band because interelectron interactions are predicted to induce a rich variety of broken-symmetry states with distinct topological and lattice-scale orders. Evidence for these states stems mostly from indirect transport experiments that suggest that broken-symmetry states are tunable by boosting the Zeeman energy or by dielectric screening of the Coulomb interaction.
View Article and Find Full Text PDFCollective guidance of out-of-equilibrium systems without using external fields is a challenge of paramount importance in active matter, ranging from bacterial colonies to swarms of self-propelled particles. Designing strategies to guide active matter and exploiting enhanced diffusion associated to its motion will provide insights for application from sensing, drug delivery to water remediation. However, achieving directed motion without breaking detailed balance, for example by asymmetric topographical patterning, is challenging.
View Article and Find Full Text PDFFor many materials, a precise knowledge of their dispersion spectra is insufficient to predict their ordered phases and physical responses. Instead, these materials are classified by the geometrical and topological properties of their wavefunctions. A key challenge is to identify and implement experiments that probe or control these quantum properties.
View Article and Find Full Text PDFAmorphous solids remain outside of the classification and systematic discovery of new topological materials, partially due to the lack of realistic models that are analytically tractable. Here we introduce the topological Weaire-Thorpe class of models, which are defined on amorphous lattices with fixed coordination number, a realistic feature of covalently bonded amorphous solids. Their short-range properties allow us to analytically predict spectral gaps.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasiparticles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity.
View Article and Find Full Text PDFThe robust quantization of observables in units of universal constants is a hallmark of topological phases. We show that chiral higher order topological insulators (HOTIs), bulk insulators with chiral hinge states, present two unusual features related to quantization. First, we show that circular dichroism is quantized to an integer or zero depending on the orientation of the sample.
View Article and Find Full Text PDFThe experimental realization of the Harper-Hofstadter model in ultracold atomic gases has placed fractional states of matter in these systems within reach-a fractional Chern insulator state (FCI) is expected to emerge for sufficiently strong interactions when half-filling the lowest band. The experimental setups naturally allow us to probe the dynamics of this topological state; yet little is known about its out-of-equilibrium properties. We explore, using density matrix renormalization group simulations, the response of the FCI state to spatially localized perturbations.
View Article and Find Full Text PDFWe reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η = ν/, where = 2π is Planck's constant.
View Article and Find Full Text PDFThe conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions.
View Article and Find Full Text PDFThe circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters.
View Article and Find Full Text PDFThe polarization of a material and its response to applied electric and magnetic fields are key solid-state properties with a long history in insulators, although a satisfactory theory required new concepts such as Berry-phase gauge fields. In metals, quantities such as static polarization and the magnetoelectric θ term cease to be well defined. In polar metals, there can be analogous dynamical current responses, which we study in a common theoretical framework.
View Article and Find Full Text PDFWeyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined.
View Article and Find Full Text PDFWe show theoretically that periodically driven systems with short range Hubbard interactions offer a feasible platform to experimentally realize fractional Chern insulator states. We exemplify the procedure for both the driven honeycomb and the square lattice, where we derive the effective steady state band structure of the driven system by using the Floquet theory and subsequently study the interacting system with exact numerical diagonalization. The fractional Chern insulator state equivalent to the 1/3 Laughlin state appears at 7/12 total filling (1/6 filling of the upper band).
View Article and Find Full Text PDFWe propose a simple method for obtaining time reversal symmetry (T) broken phases in simple lattice models based on enlarging the unit cell. As an example we study the honeycomb lattice with nearest neighbor hopping and a local nearest neighbor Coulomb interaction V. We show that when the unit cell is enlarged to host six atoms that permits Kekulé distortions, self-consistent currents spontaneously form creating nontrivial magnetic configurations with total zero flux at high electron densities.
View Article and Find Full Text PDFIn this Letter, we show that switching between repulsive and attractive Casimir forces by means of external tunable parameters could be realized with two topological insulator plates. We find two regimes where a repulsive (attractive) force is found at small (large) distances between the plates, canceling out at a critical distance. For a frequency range where the effective electromagnetic action is valid, this distance appears at length scales corresponding to 1 - ϵ(ω) ∼ (2/π)αθ.
View Article and Find Full Text PDF