Publications by authors named "Adolfo Botana"

This paper serves as a Part II follow-up of our research investigations performed on the molecular structures of silver(I)-fluoride (SF) and diammine-silver(I) fluoride (SDF) complexes in solution-based commercial products for clinical application, their precise chemical compositions, and their nature in aqueous solution, the latter including rapid fluoride-exchange processes at the silver(I) ion centre monitored by F NMR analysis (Part I). Part I of this series also explores the mechanisms of action (MoA) of these complexes, and is therefore largely focused on their chemical reactions with constituents of human saliva, which has access to their sites of application. Such reactions were found to slowly promote the generation of potentially physiologically-active Ag/AgCl nanoparticles from primarily-generated discoloured silver(I) chloride (AgCl) precipitates, a process involving salivary electron-donors such as thiocyanate and L-cysteine.

View Article and Find Full Text PDF

Introduction: Silver(I)-diammine fluoride (SDF) and silver(I)-fluoride (SF) complexes have been successfully employed for the arrest of dental caries for many years. However, to date there are very few studies available reporting on the molecular structural compositional and solution status of these agents [typically applied as highly-concentrated 38% (w/v) solutions]. Here, we explored the solution status and chemical constitution of commercially-available SDF and SF products, and secondly investigated the multicomponent interplay of these products with biomolecules present in intact human whole-mouth salivary supernatants (WMSSs) .

View Article and Find Full Text PDF

Artemisinin (ART) is a most promising antimalarial agent, which is both effective and well tolerated in patients, though it has therapeutic limitations due to its low solubility, bioavailability, and short half-life. The objective of this work was to explore the possibility of formulating ART cocrystals, i.e.

View Article and Find Full Text PDF

Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense which seriously affects human health in Africa. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work herein describes the design and syntheses of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines, with compound 13, the 4-(2-methoxyphenyl)-6-(pyridine-3-yl)pyrimidin-2-amine demonstrating an IC value of 0.

View Article and Find Full Text PDF

Analysis of metabolites in biofluids using nuclear magnetic resonance often requires the suppression of obscuring signals arising from water and macromolecules. This paper analyses the limitations of the pulse sequence most commonly used to achieve such suppression (presat-CPMG) and proposes new pulse sequences that do not share those limitations. The utility of these improved pulse sequences is demonstrated in a metabolomic study of multiple sclerosis (MS) patients.

View Article and Find Full Text PDF

Introduction: Proton nuclear magnetic resonance spectroscopy (H-NMR)-based metabolomic profiling has a range of applications in plant sciences.

Objectives: The aim of the present work is to provide advice for minimizing uncontrolled variability in plant sample preparation before and during NMR metabolomic profiling, taking into account sample composition, including its specificity in terms of pH and paramagnetic ion concentrations, and NMR spectrometer performances.

Methods: An automation of spectrometer preparation routine standardization before NMR acquisition campaign was implemented and tested on three plant sample sets (extracts of durum wheat spikelet, Arabidopsis leaf and root, and flax leaf, root and stem).

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is arguably one the most powerful tools to study the interactions and molecular structure within plants. Traditionally, however, NMR has developed as two separate fields, one dealing with liquids and the other dealing with solids. Plants in their native state contain components that are soluble, swollen, and true solids.

View Article and Find Full Text PDF

Complex mixtures are at the heart of biology, and biomacromolecules almost always exhibit their function in a mixture, e.g., the mode of action for a spider venom is typically dependent on a cocktail of compounds, not just the protein.

View Article and Find Full Text PDF

Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples.

View Article and Find Full Text PDF

High Resolution Diffusion-ordered Spectroscopy (HR-DOSY) is a valuable tool for mixture analysis by NMR. It separates the signals from different components according to their diffusion behavior, and can provide exquisite diffusion resolution when there is no signal overlap. In HR-DOSY experiments on (1)H (by far the most common nucleus used for DOSY) there is frequent signal overlap that confuses interpretation.

View Article and Find Full Text PDF

Diffusion-ordered spectroscopy (DOSY) is a powerful NMR method for identifying compounds in mixtures. DOSY experiments are very demanding of spectral quality; even small deviations from expected behaviour in NMR signals can cause significant distortions in the diffusion domain. This is a particular problem when signals overlap, so it is very important to be able to acquire clean data with as little overlap as possible.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is frequently used in the monitoring of reaction kinetics, due to its nondestructive nature and to the wealth of chemical information that can be obtained. However, when spectra of different mixture components overlap, as is common, the information available is greatly reduced, sometimes to the point where the identification of individual chemical species is not possible. In such cases, the resolution of component spectra and their concentration timecourses can be greatly improved by recording DOSY (diffusion-ordered spectroscopy) data for each time point during the reaction.

View Article and Find Full Text PDF

DOSY (diffusion-ordered spectroscopy) is one of the most commonly employed methods for identifying compounds in mixtures by nuclear magnetic resonance (NMR). However, it struggles to resolve component spectra when there is severe signal overlap and/or diffusion coefficients are very similar. In order to improve the ability of DOSY to distinguish between different species, here, relaxation has been incorporated into diffusion experiments, as a further dimension.

View Article and Find Full Text PDF

Measurement of diffusion-weighted NMR spectra as a function of time allows the time-dependence of concentration and the isolated spectrum to be found for each component in a reaction, without prior assumptions about spectra, kinetics or diffusion behaviour, by data decomposition using the PARAFAC algorithm.

View Article and Find Full Text PDF