Introduction: Research in tumor treatment has shown promising results using extracellular vesicles (EVs) derived from immune cells. EVs derived from M1 macrophages (proinflammatory), known as M1-EVs, have properties that suppress tumor growth, making them a promising treatment tool for immune susceptible tumors such as melanoma. Here, small unaltered M1-EVs (M1-sEVs) were employed in a 3D mouse melanoma model (melanospheres) to evaluate such activity.
View Article and Find Full Text PDFMicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates.
View Article and Find Full Text PDFThe progression to a castration-resistant prostate cancer can occur after treatment with androgen deprivation therapy, resulting in poor prognosis and ineffective therapy response. Hormone dependence transition has been associated with increased tumor vascularization. Considering that exosomes are important components in communication between tumor cells and the microenvironment, we examined the angiogenic potential of exosomes released from Pca cell lines with distinctive profiles of androgen response through exosomes isolation, microscopy and uptake, functional assays follow up by microarray, RT-qPCR and bioinformatics analysis.
View Article and Find Full Text PDFProstate cancer-related deaths are mostly caused by metastasis, which indicates the importance of identifying clinical prognostic biomarkers. In this study, we evaluated the expression profile of exosomal microRNAs (miRNAs) derived from metastatic prostate cancer (mPCa) cell lines (LNCaP and PC-3). miRNA signatures in exosomes and cells were evaluated by miRNA microarray analysis.
View Article and Find Full Text PDFBackground: The use of RNA interference (iRNA) therapy has proved to be an interesting target therapy for the cancer treatment; however, siRNAs are unstable and quickly eliminated from the bloodstream. To face these barriers, the use of biocompatible and efficient nanocarriers emerges as an alternative to improve the success application of iRNA to the cancer, including breast cancer.
Results: A hybrid nanocarrier composed of calcium phosphate as the inorganic phase and a block copolymer containing polyanions as organic phase, named HNPs, was developed to deliver VEGF siRNA into metastatic breast cancer in mice.
Abstract: The development of new treatments for malignant melanoma, which has the worst prognosis among skin neoplasms, remains a challenge. The tumor microenvironment aids tumor cells to grow and resist to chemotherapeutic treatment. One way to mimic and study the tumor microenvironment is by using three-dimensional (3D) co-culture models (spheroids).
View Article and Find Full Text PDFIncreased production and use of different types of nanoparticles (NPs) in the last decades has led to increased environmental release of these NPs with potential detrimental effects on both the environment and public health. Information is scarce in the literature on the cytotoxic effect of co-exposure to many NPs as this concern is relatively recent. Thus, in this study, we hypothesized scenarios of cell's co-exposure to two kinds of NPs, solid lipid nanoparticles (SLNs) and superparamagnetic iron oxide nanoparticles (SPIONs), to assess the potential cytotoxicity of exposure to NPs combination.
View Article and Find Full Text PDFBreast cancer is a major cause of death among women worldwide. Resistance to conventional therapies has been observed in HER2-positive breast cancer patients, indicating the need for more effective treatments. Small interfering RNA (siRNA) therapy is an attractive strategy against HER2-positive tumors, but its success depends largely on the efficient delivery of agents to target tissues.
View Article and Find Full Text PDFAcute-on-chronic liver failure (ACLF) is a condition characterized by acute decompensation of cirrhosis, associated with organ failure(s), and high short-term mortality. The microRNAs or miRNAs are small non-coding RNA molecules, stable in circulating samples such as biological fluids, and the difference in expression levels may indicate the presence, absence and/or stage of the disease. We analyzed here the miRNA profiling to identify potential diagnostic or prognostic biomarkers for ACLF.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2019
In a previous study, we described a series of 28 aryl- and alkyl-substituted isothiouronium salts with antitumor activity and selectivity toward a leukemia cell line. Among the synthesized compounds, methyl (Z)-2-(isothioureidomethyl)-2-pentenoate hydrobromide (IS-MF08) showed conspicuous activity. In the present study, we investigated the mechanism of action of IS-MF08.
View Article and Find Full Text PDFShort interfering RNA (siRNA) showed to be a viable alternative to a better prognosis in cancer therapy. Nevertheless, the successful application of this strategy still depends on the development of nanocarriers for the safe delivery of siRNA into the diseased tissue, which mostly occurs by passive accumulation. When an external magnetic field is applied, magnetic nanoparticles biodistribution is partially modulated to favor accumulation in a target tissue.
View Article and Find Full Text PDFGlioblastoma is the most common and aggressive glioma, characterized by brain invasion capability. Being very resistant to the current therapies, since even under treatment, surgery, and chemotherapy with temozolomide (TMZ), patients achieve a median survival of one year. In the search for more effective therapies, new molecules have been designed.
View Article and Find Full Text PDFMetastasis is the main cause of cancer-related death and requires the development of effective treatments with reduced toxicity and effective anticancer activity. Gallic acid derivatives have shown significant biological properties including antitumoral activity as shown in a previous study with octyl gallate (G8) in vitro. Thus, the aim of this work was to evaluate the antimetastatic effect of free and solid lipid nanoparticle-loaded G8 in mice in a lung metastasis model.
View Article and Find Full Text PDFTumorigenesis is related to an imbalance in controlling mechanisms of apoptosis. Expression of the genes BCL-2 and BCL-xL results in the promotion of cell survival by inhibiting apoptosis. Thus, a novel approach to suppress antiapoptotic genes is the use of small interfering RNA (siRNA) in cancer cells.
View Article and Find Full Text PDFA series of 28 aryl- and alkyl-substituted isothiouronium salts were readily synthesized in high yields through the reaction of allylic bromides with thiourea, N-monosubstituted thioureas or thiosemicarbazide. The S-allylic isothiouronium salts substituted with aliphatic groups were found to be the most effective against leukemia cells. These compounds combine high antitumor activity and low toxicity toward non-tumoral cells, with selectivity index higher than 20 in some cases.
View Article and Find Full Text PDFIn this work in vivo experiments were conducted in order to characterize the biocompatibility of polyurethane nanoparticles (PU-NPs) after intraperitoneal (i.p.) and oral administration.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO NP) are present in several daily use products, and the risks associated with their bioaccumulation must be stablished. Thus, an evaluation of several toxicological-related effects was conducted after intraperitoneal injection of TiO NPs in mice. Mice were divided into two groups, which received 2 mg kg day of TiO NPs or vehicle saline.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2014
Several obstacles are encountered in conventional chemotherapy, such as drug toxicity and poor stability. Nanotechnology is envisioned as a strategy to overcome these effects and to improve anticancer therapy. Nanoemulsions comprise submicron emulsions composed of biocompatible lipids, and present a large surface area revealing interesting physical properties.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is a malignant disorder caused by the proliferation of lymphoid progenitor cells and is the most common cancer in children. Cytotoxic nucleoside analogues are important chemotherapeutic agents, which are used in many cancers, including leukemias. In this study, we investigated the effects of the synthetic nucleoside analogue 1-(5,5,5-trichloro-2-methoxy-4-oxopenten-2-yl)-4-trichloromethyl-pyrimidin-2(1H)-one, named compound 3 or C3, on leukemia cell lines.
View Article and Find Full Text PDFToxicol In Vitro
August 2014
Chalcones, naturally occurring open-chain flavonoids abundant in plants, have demonstrated anticancer activity in multiple tumor cells. In a previous work, the potential anticancer activity of three naphthylchalcones named R7, R13 and R15 was shown. In this study, the mechanism of actions of these chalcones was originally shown.
View Article and Find Full Text PDFSolid lipid nanoparticles (SLNs) are an alternative drug delivery system compared to emulsions, liposomes and polymeric nanoparticles. Due to their unique sizes and properties, SLNs offer possibility to develop new therapeutic approaches. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could be used for drug targeting.
View Article and Find Full Text PDF