Publications by authors named "Adna Halilovic"

Human corneal endothelial cells (HCEnCs) are terminally differentiated cells that have limited regenerative potential. The large numbers of mitochondria in HCEnCs are critical for pump and barrier function required for corneal hydration and transparency. Fuchs Endothelial Corneal Dystrophy (FECD) is a highly prevalent late-onset oxidative stress disorder characterized by progressive loss of HCEnCs.

View Article and Find Full Text PDF

Aims: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death.

Results: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens.

View Article and Find Full Text PDF

Purpose: The aim of the study was to test the hypotheses that injury stimulates the expression of miR-205, which in turn inhibits KCNJ10 channels by targeting its 3' UTR, thereby facilitating the wound-healing process in human corneal epithelial cells (HCECs).

Methods: A stem-loop qRT-PCR was used to examine the miR-205 expression. BrdU cell proliferation assay and wound scratch assay were applied to measure the effect of miR-205 mimic or antagomer in HCECs.

View Article and Find Full Text PDF

Our studies demonstrated that Heme oxygenase (HO), in particular, the constitutive HO-2, is critical for a self-resolving inflammatory and repair response in the cornea. Epithelial injury in HO-2 null mice leads to impaired wound closure and chronic inflammation in the cornea. This study was undertaken to examine the possible relationship between HO-2 and the recruitment of neutrophils following a corneal surface injury in wild type (WT) and HO-2 knockout (HO-2(-/-)) mice treated with Gr-1 monoclonal antibody to deplete peripheral neutrophils.

View Article and Find Full Text PDF

Purpose: Heme oxygenase (HO)-2 is highly expressed in the corneal epithelium and is a component of the heme oxygenase system that represents an intrinsic cytoprotective and anti-inflammatory system based on its ability to modulate leukocyte migration and to inhibit expression of inflammatory cytokines and proteins via its products biliverdin/bilirubin and carbon monoxide (CO). We have shown that in HO-2 null mice epithelial injury leads to unresolved corneal inflammation and chronic inflammatory complications including ulceration, perforation and neovascularization. In this study, we explore whether a localized corneal suppression of HO-2 is sufficient for disrupting the innate anti-inflammatory and repair capability of the cornea.

View Article and Find Full Text PDF

Heme oxygenase (HO) represents an intrinsic cytoprotective system based on its anti-oxidative and anti-inflammatory properties mediated via its products biliverdin/bilirubin and carbon monoxide (CO). We showed that deletion of HO-2 results in impaired corneal wound healing with associated chronic inflammatory complications. This study was undertaken to examine the role of HO activity and the contribution of HO-1 and HO-2 to corneal wound healing in an in vitro epithelial scratch injury model.

View Article and Find Full Text PDF

In previous studies, we have shown that heme oxygenase (HO)-2 null [HO-2(-/-)] mice exhibit a faulty response to injury; chronic inflammation and massive neovascularization replaced resolution of inflammation and tissue repair. Endothelial cells play an active and essential role in the control of inflammation and the process of angiogenesis. We examined whether HO-2 deletion affects endothelial cell function.

View Article and Find Full Text PDF