Publications by authors named "Adline Princy"

Uropathogenic Escherichia coli (UPEC) are the most common cause of UTI, accounting for more than 90% infections in the normal and unobstructed urinary tracts. Multi-drug resistance (MDR) is an emerging threat to the mankind and hence, there is an urge to develop alternative therapies. Targeting quorum sensing (QS), a cell-cell communication process regulates various biofilm and virulence factors would be a most promising alternate which curbs the pathogenesis without killing the bacteria, unlike antibiotics.

View Article and Find Full Text PDF

is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS) mechanism. The QS circuit of is controlled by the global quorum regulator, LuxO, which at low cell density (LCD) state produces major virulence factors such as, toxin co-regulated pilus (TCP) and cholera toxin (CT) to mediate infection. On the contrary, at the high cell density (HCD) state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease.

View Article and Find Full Text PDF

Dental caries occurs as a result of dysbiosis among commensal and pathogenic bacteria leading to demineralization of enamel within a dental biofilm (plaque) as a consequence of lower pH in the oral cavity. In our previous study, we have reported 1,3-disubstituted ureas particularly, 1,3-di-m-tolylurea (DMTU) could inhibit the biofilm formation along with lower concentrations of fluoride (31.25 ppm) without affecting bacterial growth.

View Article and Find Full Text PDF

is a widely acknowledged Gram-positive pathogen for forming biofilm and virulence gene expressions by quorum sensing (QS), a cell to cell communication process. The quorum regulator SarA of up-regulates the expression of many virulence factors including biofilm formation to mediate pathogenesis and evasion of the host immune system in the late phases of growth. Thus, inhibiting the production or blocking SarA protein might influence the down-regulation of biofilm and virulence factors.

View Article and Find Full Text PDF

Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S.

View Article and Find Full Text PDF

The expression of virulence genes in the human pathogen Staphylococcus aureus is strongly influenced by the multiple global regulators. The signal transduction cascade of these global regulators is accountable for recognizing and integrating the environmental cues to regulate the virulence regulon. While the production of virulent factors by individual global regulators are comparatively straightforward to define, auto-regulation of these global regulators and their impact on other regulators is more complex process.

View Article and Find Full Text PDF

Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S.

View Article and Find Full Text PDF

Urinary Tract Infection (UTI) is a globally widespread human infection caused by an infestation of uropathogens. Eventhough, Escherichia coli is often quoted as being the chief among them, Staphylococcus aureus involvement in UTI especially in gestational UTI is often understated. Staphylococcal accessory regulator A (SarA) is a quorum regulator of S.

View Article and Find Full Text PDF

Staphylococcus aureus is a common pathogen seen in prosthetic vascular graft, leading to high morbidity and mortality. The virulence genes for severity of infections are under the control of global regulators. Staphylococcal accessory regulator A (SarA) a known master controller of biofilm formation is an attractive target for the drug development.

View Article and Find Full Text PDF

Cholera, a known diarrheal disease is associated with various risk factors like hypovolemic shock, rice watery stools, and death in developing countries. The overuse of antibiotics to treat cholera imposed a selective pressure for the emergence and spread of multi-drug resistant Vibrio cholerae strains. The failure of conventional antimicrobial therapy urged the researchers to find an alternative therapy that could meddle the cholera murmurs (Quorum Sensing).

View Article and Find Full Text PDF

The first set of competitive inhibitors of molt inhibiting hormone (MIH) has been developed using the effective approaches such as Hip-Hop, virtual screening and manual alterations. Moreover, the conserved residues at 71 and 72 positions in the molt inhibiting hormone is known to be significant for selective inhibition of ecdysteroidogenesis; thus, the information from mutation and solution structure were used to generate common pharmacophore features. The geometry of the final six-feature pharmacophore was also found to be consistent with the homology-modeled MIH structures from various other decapod crustaceans.

View Article and Find Full Text PDF

Staphylococcus aureus pathogenesis is an intricate process involving a diverse array of extracellular proteins, biofilm and cell wall components that are coordinately expressed in different stages of infection. The expression of two divergent loci, agr and sar, is increasingly recognized as a key regulator of virulence in S. aureus, and there is mounting evidence for the role of these loci in staphylococcal infections.

View Article and Find Full Text PDF

The uropathogenic Escherichia coli pathogenecity is affected by quorum sensing transcriptional regulator SdiA. In this study, in vitro characterization of the active principles that could potentially antagonize with SdiA from the Melia dubia bark extracts has been described. After in vitro assays carried out to evaluate the inhibitory activities against the uropathogenic E.

View Article and Find Full Text PDF