Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic G and G associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic G-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons.
View Article and Find Full Text PDFLong-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are.
View Article and Find Full Text PDFIntroduction: We explored what combination of blood-based biomarkers (amyloid beta [Aβ], phosphorylated tau [p-tau]181, neurofilament light [NfL], glial fibrillary acidic protein [GFAP]) differentiates Alzheimer's disease (AD) dementia, frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB).
Methods: We measured the biomarkers with Simoa in two separate cohorts (n = 160 and n = 152). In one cohort, Aβ was also measured with mass spectrometry (MS).