Glucosinolates (GSLs) are secondary metabolites in Brassicaceae plants and play a defensive role against a variety of abiotic and biotic stresses. Also, it exhibits anti-cancer activity against cancer cell in human. Different profiles of aliphatic GSL compounds between radish and Chinese cabbage were previously reported.
View Article and Find Full Text PDFFloral transition is accelerated by exposure to long-term cold like winter in plants, which is called as vernalization. Acceleration of floral transition by vernalization is observed in a diversity of biennial and perennial plants including Brassicaceae family plants. Scientific efforts to understand molecular mechanism underlying vernalization-mediated floral transition have been intensively focused in model plant Arabidopsis thaliana.
View Article and Find Full Text PDFPolycomb group proteins (PcG) play a crucial role in developmental programs in eukaryotic organisms, including plants. PcG-mediated gene repression is achieved by epigenetic histone modification on target chromatins. Loss of PcG components leads to severe developmental defects.
View Article and Find Full Text PDFGlucosinolates (GSLs) are secondary metabolites providing defense against pathogens and herbivores in plants, and anti-carcinogenic activity against human cancer cells. Profiles of GSLs vary greatly among members of genus . In this study, we found that a reference line of Chinese cabbage ( ssp.
View Article and Find Full Text PDFVernalization is the process by which long-term cold like winter triggers transition to flowering in plants. Many biennial and perennial plants including Brassicaceae family plants require vernalization for floral transition. Not only floral transition, but dynamic physiological and metabolic changes might also take place during vernalization.
View Article and Find Full Text PDFDue to an unfortunate turn of events, an incorrect note was provided in the original publication as it should have read.
View Article and Find Full Text PDFThus study found the temporal and spatial relationship between production of aliphatic glucosinolate compounds and the expression profile of glucosinolate-related genes during growth and development in radish, Chinese cabbage, and their intergeneric hybrid baemoochae plants. Glucosinolates (GSLs) are one of major bioactive compounds in Brassicaceae plants. GSLs play a role in defense against microbes as well as chemo-preventative activity against cancer, which draw attentions from plant scientists.
View Article and Find Full Text PDF