Object: The artificial disc has been proposed as an alternative to spinal fusion for degenerative disc disease. The primary aim of this biomechanical study was to compare motion and intradiscal pressure (IDP) in a ball-and-socket artificial disc-implanted cadaveric lumbar spine, at the operative and adjacent levels, using a displacement-controlled setup. A secondary comparison involved a "salvage" construct, consisting of pedicle screws (PSs) added in supplementation to the artificial disc construct.
View Article and Find Full Text PDFObject: The pedicle screw (PS) is the cornerstone of spinal instrumentation, and its failure often entails additional surgery. Screw pullout is one of the most common reasons for screw failure, particularly in the elderly population. In this study the authors undertook a biomechanical comparison of the maximum pullout force (MPF) required for single- and dual-lead PSs in cadaver vertebrae.
View Article and Find Full Text PDFObject: In instrumentation of the upper cervical spine, placement of pedicle screws into C-2 is generally safe, although there is the potential for injury to the vertebral arteries. Owing to this risk, translaminar screws into C-2 have been used. The aim of this study was to compare the stability of the in vitro cadaveric spine using C-2 laminar compared with C-2 pedicle screws in C2-3 instrumentation.
View Article and Find Full Text PDF